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Abstract

Autonomous Robots, VR and AR are becoming increasingly
popular in indoors, because of which there has been immense
research in alternate sensor modalities to achieve low cost and
cm-accurate simultaneous localization and mapping (SLAM)
algorithms. While there exist inside-out SLAM algorithms
that do not need external deployment, they accrue errors over
time, leading to high error SLAM systems. On the other hand,
there are outside-in systems that claim mm-accurate localiza-
tion systems but are easily prone to errors due to blockage by
user movement. Moreover, they are expensive to deploy on
large scales. In this poster, we present the tools to perform
both outside-in and inside-out SLAM together and achieve a
perfect loop closure using WiFi as an additional sensor. First,
we present an outside-in bot localization algorithm, DLoc,
that achieves high accuracy even in the corner cases of NLOS,
unlike existing WiFi indoor localization algorithms. Then
we present the inverse problem of solving for accurate WiFi
access point locations and geometries and our solution of
LocAP, which solves accurate AP infrastructure in a given
environment which is similar to the existing inside-out SLAM
approaches like Landmark optimization. Thus in our poster,
we present and demo our work of LocAP and DLoc and show
how they complement each other in closing the loop by bor-
rowing the best of both the worlds to achieve low-cost and
sub-cm-accurate SLAM algorithm.

1 Introduction

Indoor systems like AR/VR systems today depend on two
forms of tracking. Inside-out tracking, which involves fea-
ture matching using onboard sensors, can fail if the VR/AR
headset moves too fast or if the environment is feature-sparse.
Outside-in tracking, which employs external sensors (eg. HTC
Vive [1]), constrain the users to small Sm x 5m environments
and needs expensive infrastructure deployment. Another prob-
lem, in the outdoor setting of Advanced Driver Assistance
Systems (ADAS), is the failure of LIDAR and cameras in
foggy and stormy weather [9]. Both these problems can be
solved using wireless (WiFi for indoor/5G NR for outdoor)
localization and tracking. Unfortunately, the current wireless
localization and tracking systems fail to achieve the required
degree of accuracy at tracking and navigation in both indoors
and outdoors. A key reason is the abundance of multi-path and
non-line-of-sight scenarios in Indoor scenarios and poor sig-
nal quality in outdoor scenarios. Another reason is the lack of
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Figure 1: Implementation of LocAP and DLoc (Left) An
unknown environment with unknown AP attributes and un-
known environment, where LocAP is deployed first. (Right)
Once LocAP is deployed and mapped initial locations of AP,
DLoc and LocAP are used in tandem to correct for each other
to achieve low-cost sub-cm accurate SLAM.

a closed-loop tracking system (which utilizes both inside-out
and outside-in tracking) in the current wireless localization
systems. Furthermore, current systems are cumbersome to
deploy and do not provide accurate localization within the
context of the map.

We would like to tackle this issue by utilizing a Graph
SLAM architecture [4] which combines both inside-out and
outside-in tracking and label it closed-loop SLAM. We hope
to provide sub-cm-level localization, with the context of a
map, in both outdoor and indoor scenarios.

To achieve this closed-loop SLAM, we need two main
moving parts — forward localization and reverse localization.
Forward localization provides the global estimates of the user
device, given the positions of the access point. Whereas, re-
verse localization contrasts this measurement, by providing
estimates for the access points and their antenna geometries.
Reverse localization furnishes these measurements given the
channel measurements from a contiguous set of user locations.
Immediately, we can see how the two can work together to
bolster each other’s predictions. In the following text, we will
describe our work in developing a unique forward localiza-
tion algorithm, DLoc [3] and a reverse localization algorithm,
LocAP [2].

Firstly, for forward localization we present DLoc[3], a
learning-based user localization technique that achieves state-
of-the-art user localization. There has been a lot of research
in the past two decades in indoor WiFi-based user localiza-
tion [5, 7, 8] that has achieved decimeter level indoor user
localization. None of these algorithms tackle the problem of
the more prevalent NLOS scenario when there is no direct
line of sight path from the transmitter to the receiver. In DLoc,
we firstly tackle this NLOS scenario by learning-based ap-



Figure 2: Robot deployment: (Right) We deploy both of our
systems (DLoc and LocAP) on the bot shown above so as to
demonstrate the working principal of WiFi based closed-loop
SLAM algorithm.(Left) An example map generated by the
bot deployed in an unknown environment.

proaches, where we have an autonomous bot that explores an
already mapped space, to cover sufficient diversity of training
data to train our deep neural network model. Thus by training
for a given mapped space, DLoc achieves to accurately tackle
the NLOS scenario and achieves state-of-the-art decimeter
level localization performance for 90th percentile datapoints.

With the help of forward localization we have achieved the
robustness of outside-in tracking of localization, but are still
vulnerable to errors in the anchor points that locate the user.
Unlike forward localization, there is little research in reverse
localization or accurately locating the WiFi access points.
So we present, LocAP[2], which accurately locates the WiFi
access points (APs) and their antenna geometries/placements
to within a few mm of median error. In this work, we first
present the stringent requirements on the location and antenna
placements on the AP and show that one needs to be able to (a)
locate the access point within sub-10cm accuracy, (b) estimate
the relative displacement of each antenna on the AP accurate
to sub-cm, and (c) the deployment orientation of the AP to
less than 10° of error. We then show a novel differential phase
difference based algorithm that achieves these requirements
by smart combining techniques. LocAP solves accurate AP
location and antenna geometry on the AP thus performing the
inside-out tracking.

Thus we achieve the best of inside-out robustness using
LocAP and outside-in accuracies using DLoc, which we can
then use in a closed-loop Graph SLAM architecture to achieve
mme-accurate user localization and environment mapping.

2 Deployment

Both of our systems are deployed a bot that is an autonomous
robot equipped with LIDAR, RGBD camera, gyroscope and
odometer to navigate an environment. We use the publicly
available RTAB-Map SLAM framework[6] to create an ac-
curate 2D occupancy grid map as shown in Fig 2(left). Fur-
thermore, given a descriptive map of the environment, these
frameworks also provide the locations of the bot.

To achieve autonomous navigation, our bot works in two

stages. Firstly with the user’s aid, it navigates the environ-
ment. In this stage, SLAM works by capturing data from these
sensors and combining this data into an accurate map of the
environment. Next, during the autonomous data collection
phase, the bot uses this map to match features it has previously
seen before to accurately localize itself in real-time. It then
collects location associated with reverse localize the WiFi
AP infrastructure and also explore the environment to collect
training data for DLoc. We then use these initial estimates of
the WiFi APs and the trained DLoc model to initiate our loop
for optimizing the closed-loop Graph-SLAM architecture de-
fined. We would like to present and demonstrate the working
of our two systems during the poster session for the same.
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