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Abstract— Many recent works have explored using WiFi-
based sensing to improve SLAM [1], robot manipulation [2] or
exploration [3]. Moreover, widespread availability makes WiFi
the most advantageous RF signal to leverage. But WiFi sensors
lack an accurate, tractable, and versatile toolbox, which hinders
their widespread adoption with robot’s sensor stacks.

We develop WiROS to address this immediate need, furnishing
many WiFi-related measurements as easy-to-consume ROS
topics. Specifically, WiROS is a plug-and-play WiFi sensing
toolbox providing access to coarse-grained WiFi signal strength
(RSSI), fine-grained WiFi channel state information (CSI),
and other MAC-layer information (device address, packet
id’s or frequency-channel information). Additionally, WiROS
open-sources state-of-art algorithms to calibrate and process
WiFi measurements to furnish accurate bearing information
for received WiFi signals. The open-sourced repository is:
WiROS:https://github.com/ucsdwcsng/WiROS.

I. INTRODUCTION

Incorporating wireless sensing into a robotics sensor stack
allows robots to better handle the failure cases of visual
sensors like cameras or Lidars. Many recent works [1], [2], [4]
have shown that integrating wireless signals helps to overcome
common failure cases like visual occlusion, dynamic lighting,
or perceptual aliasing [5]. Among the various wireless-sensing
modalities explored, leveraging WiFi sensing is particularly
attractive. It is widely deployed in many indoor environments,
most robots already have WiFi chipsets for communication
purposes, and it provides an extended sensing range (over
10 m). With this in mind, many recent papers [1], [4], [6]
explore using WiFi signals.

However, no easy solutions exist for integrating them into
an existing robot’s sensor stack, precluding their wider use.
Popular cameras [7] and Lidars [8] enjoy wide support within
the Robot Operating System (ROS) framework with clear
documentation. This ROS support allows for quick integration
and easy operation of these sensors. The same, however,
cannot be said for WiFi sensors, inhibiting their adoption
for robotics applications. In this work, we present WiROS
to fill in this gap. WiROS develops a set of ROS nodes that
furnishes raw WiFi measurements, processed WiFi features,
and visualizations as ROS topics and provides an easy-to-
perform wireless calibration framework.

With the broad goal of providing accessible WiFi sensing
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Fig. 1: The sensor hardware, like cameras and Lidars, have widely
supported ROS nodes. This work releases WiROS, a similar ROS
node compatible with WiFi sensors.

information within robot sensor stacks, we follow three design
principles. A WiFi sensor wrapper should be
1) Accurate: provide WiFi sensing measurements accurately,
2) Tractable: quick to bring up and easy to calibrate,
3) Versatile: widely usable in WiFi-equipped spaces.
Prior Works: However, many existing systems that furnish
WiFi measurements at the robot application layer fail to meet
one or a few of these requirements, making them unsuitable
for robot integration.
• WiFi measurement tools: There are two widely used

open-source WiFi measurement toolkits [9], [10] which
support the IEEE 802.11n protocol. However, this protocol
is outdated and consequently not as widely supported in
current WiFi deployments. Alternatively, newer toolkits that
leverage the IEEE 802.11ac [11] and IEEE 802.11ax [12],
[13] exist. Unfortunately, these systems do not expose
WiFi measurements in real-time, instead storing it on the
device in specialized files. This requires additional post-
processing and time-synchronization, precluding real-time
robot operation. Consequently, these toolkits are neither
versatile nor tractable.

• ROS-supported Tools: To circumvent these challenges, a
few tools integrate WiFi measurements into ROS frame-
works. [14] provides only the WiFi signal strength (RSSI)
measurements via a ROS topic, which can be used as a
proxy between a transmitter and receiver. However, RSSI is
a very coarse-grained, environment-sensitive measurement,
whereas richer WiFi measurements exist that can expand
the use of WiFi sensors. These richer measurements
(channel state information, CSI) are exposed in the tools
above and help determine the arrival and departure angles
of a WiFi signal, the velocity of the WiFi sensor, or
even fine-grained information about the environment [15].
Figure 2 details these physical measurements. A recent
work [16] looked at providing ROS support for the 802.11n
chipsets [9], [10] mentioned previously. However, this
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system requires active collaboration with the WiFi infras-
tructure, requiring deployed WiFi APs to perform ‘round-
robin’ packet exchanges. This infrastructure dependency
precludes ubiquitous deployment of WiFi sensing in indoor
environments and presents logistic, security, and networking
challenges. For instance, a public deployment of their
system would require firmware upgrades on deployed WiFi
access points, authentication of third-party robots with
a secure network, and introduce additional burdens on a
congested network. Additionally, as of this writing1, it does
not provide ready integration to ROS.
WiROS instead leverages widely used 802.11ac WiFi

protocol, which provides 2× the sensing bandwidth (im-
proving accuracy). We build on prior work [11] a WiFi
sensing framework making the following contributions and
overcoming the limitation of the prior works:
1. Scalable framework for WiFi sensing: We provide a ROS
node (‘CSI-Node’) as a simple abstraction over the hardware
used to collect CSI to allow for simple integration and lever-
age ROS-based time synchronization. WiROS subsequently
extracts various physical parameters (angles of arrival and
departure of the signal, angular positions of reflections in the
environment) to aid robot operation. For example, WiROS can
measure the bearings of other robots or arbitrary transmitters
(WiFi APs, laptops, phones, or IoT devices) from a single
received WiFi packet, without associating or authenticating
with the existing network. This prevents network congestion,
does not require collaboration with network infrastructure, and
allows for ubiquitous deployment of our system in multiple
indoor spaces. Clearly, WiROS enables versatile WiFi sensing,
and additional details can be found in Section II-B.
2. Easy calibration and setup: Commercial APs come
with unique hardware biases, which can skew the signal
measurements [17]. These biases need to be measured apriori,
and measurements must be calibrated to estimate various
physical parameters, including the bearing of the transmitted
signal. Past works [18], [19], [16] have required disassembly
of the device and manual measurement of these biases,
severely reducing the tractability of a sensor platform. Instead,
we provide a solution for automatically calibrating the phase
offsets on-robot by extending the work in [17]. This allows for
hassle-free and real-time wireless calibration, with Section II-
C providing further details.
3. Algorithms for sensing: Finally, we provide a ROS
node (‘Feature-extraction Node’) to estimate the angles of
arrival and departure of a WiFi signal using state-of-the-
art techniques [20], [21]. Additionally, we provide intuitive
visualizations of the received WiFi signal to aid debugging.
Providing this node serves two key purposes. First, it allows
out-of-the-box use of WiFi measurements for SLAM and other
navigation purposes. Second, it provides a blueprint for using
WiFi CSI to perform wider tasks like Doppler estimation or
time-of-flight measurements [22]. These concepts are further
elaborated in Section II-D.

In the next section, we will provide a high-level overview

1Referring to Github commit 7e79508
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Fig. 2: Signal parameters measurable by CSI The direct path’s
(solid line) and multi-path’s (dotted line) angles of arrival and
departure can be measured in the local coordinates of the APs. The
robot’s velocity may also be measured.

of WiROS’s usage (Section II-A) and specific details about
the above three contributions.

II. DESIGN AND USAGE

WiROS’s primary motivation is to provide an accessible
WiFi sensor within robot sensor stacks to leverage key
advantages WiFi signals provide. In this vein, we will first
provide a quick rundown on the usage of WiROS, the WiFi
measurements exposed via ROS topics and visualizations
of these measurements (Section II-A). This will act as an
overview for the extensive documentation provided along
with the code repositories2

WiROS’s secondary motivation is to provide a replicable
framework that can be easily integrated with different WiFi
radio hardware and CSI extraction toolkits. In this vein, we
will provide details of
(a) extending Nexmon-CSI [11] as an example in developing
WiROS (Section II-B),
(b) the wireless calibration techniques incorporated within
WiROS (Section II-C), and
(c) the open-sourced implementation of various state-of-
art bearing estimation algorithms for readily using WiFi
measurements (Section II-D).

A. Using WiROS
First, we demonstrate usage of WiROS with Asus RT-
AC86U [23], however, other chipsets can also be readily
used, and we provide further details on how one can integrate
other chipsets into WiROS’s framework in Section II-E. To
setup the hardware, we need to follow three simple steps
1) Compile the open-source ROS packages using catkin.2

2) Setup the access point by flashing the provided firmware.
3) Configure provided ROS params and stream the WiFi

measurements as ROS topics.
To elaborate on these steps, we will set up this Asus off-the-
shelf access point as both a WiFi receiver or a transmitter
using WiROS’s CSI Node2. As shown in Figure 3, the CSI
Node takes as input ROS params, in blue, which will be
discussed briefly below.
Setting up a receiver: The specific WiFi frequency-channel
and bandwidth should be first configured via ‘channel’ params.
A filter for specific MAC addresses can also be included via

2 WiROS’s Index page: https://github.com/ucsdwcsng/WiROS
Sub-links: CSI Node: https://github.com/ucsdwcsng/wiros csi node
Feature-extraction Node: https://github.com/ucsdwcsng/wiros processing node
Custom RF messages: https://github.com/ucsdwcsng/rf msgs

https://github.com/Harvard-REACT/WSR-Toolbox/tree/7e795086ccd4c11935e2685080f62848e18801c2
https://github.com/ucsdwcsng/WiROS
https://github.com/ucsdwcsng/wiros_csi_node
https://github.com/ucsdwcsng/wiros_processing_node
https://github.com/ucsdwcsng/rf_msgs
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Fig. 3: WiROS’s Block Diagram: An inside look at the WiROS’s box from Fig 1. Showcases the two main blocks - CSI Node and
Feature-extraction Node to extract raw WiFi measurements and to calibrate and process these measurements. The blue text indicates the
control plane parameters, whereas the red text indicates the exposed measurements. WiROS extends the functionality of the underlying
black box ‘CSI Extraction Toolkit.’

the ‘packet’ params. If an all-pass filter is used, WiROS
will monitor and provide WiFi measurements for received
signals for all WiFi devices transmitting on the specified
WiFi channel and bandwidth. With these configurations
set up, the receiver can be brought up with rosrun
wiros csi node csi node. Alternatively, simple launch
files are provided to further improve tractability.

However, as mentioned, receiving WiFi signals from a
specific channel and bandwidth can reduce usability in a
wild environment. Most enterprise WiFi networks deploy
multiple access points (AP) that serve users across a building.
Neighboring APs in these networks are often deployed on
different frequency channels to reduce interference. Hence,
WiROS will miss out on CSI measurements from APs
configured on other channels. To ensure versatility of our
system, we implement a ROS service which allows a
user to switch channels on the WiFi sensors. Additionally,
WiROS automates this channel switching to monitor the
channel of the nearest AP by periodically scanning all the
WiFi channels. This automated behavior can be enabled via
the ‘setup’ params.
Setting up a transmitter: Additionally, researchers may
often require a steady source of WiFi transmissions, with
configurations of the WiFi frequency-channel, bandwidth or
MAC address. For example, later in Section II-C, we will
need to configure a WiFi AP to transmit packets continuously
to compute the hardware calibration parameters. The ‘channel’
and ‘setup’ params can be used to configure the transmitter.
With these parameters configured, the AP can be brought up
with the same rosrun command as before. Next, we will
discuss an overview of the exposed measurements available
as ROS topics via an Ethernet connection.
Exposed measurements: Once a receiver has been set up, it
will capture WiFi measurements from ambient WiFi signals
in the configured frequency-channel and bandwidth. These
measurements will be available via a ROS topic through
a custom WiFi-sensing ROS message, rf msgs/Wifi as
shown in Figure 3. Amongst the various exposed information,
the signal strength (RSSI) and the channel state information
(CSI) are the two commonly used measurements. RSSI,
measured in dB, provides a rough estimate of the distance
of the transmitter and is widely used as a proxy to measure

communication throughput [24], as a feature for improving
SLAM performance [6] or to map the transmitters [25]
coarsely. Alternatively, CSI provides more fine-grained in-
formation. It is a matrix of complex numbers indicating
the received signal magnitude and phase across a set of
transmitted frequencies and receiver antennas. The number
of transmitted frequencies is controlled by the bandwidth
(20, 40 or 80 Mhz), with the 80 MHz bandwidth only
supported in the 802.11ac protocol. By default, for the Asus
hardware, there are 4 receive antennas compared to 3 receive
antennas commonly present in alternative systems [10], [9].
The larger bandwidth and number of antennas provide more
accurate sensing capabilities. Additionally, if a transmitter
has multiple antennas configured, an additional dimension for
the number of transmit antennas are present. However, these
CSI measurements are challenging to visualize. To improve
the tractability of WiFi sensors, we provide further details
on the real-time visualizations included in WiROS next.
Visualization and processing measurements: The CSI
measurements available via ROS topics can be processed
and visualized by deploying the Feature-extraction node2.
This node furnishes two important visualizations – the
magnitude-phase profile and the bearing-range likelihood
profile. The magnitude-phase profile (see Figure 4(a)) pro-
vides a visualization of the CSI measurements, providing
the magnitude (y-axis of top image) and phase (y-axis of
bottom image) of the received signal in decibels and degrees,
respectively, across various subcarrier frequencies (in the
x-axis) and across the four receive antennas (as different
lines). The bearing-range profile (see Figure 4(c)) indicates
the arrival of a WiFi signal from the transmitter via a straight-
line direct path and numerous reflected paths. The profile’s
peaks indicate the bearing of the transmitter (in the vertical
axis) and the relative distances of the direct-path signal and
its reflected-path echoes. Additionally, visualization of these
profiles is provided in the supplementary video.3 Both these
visualizations, exported as sensor msgs/Image as shown
in Figure 3, can be utilized to debug the wireless channel,
check if all the receive antennas are performing equivalently
or tune processing parameters like algorithms to leverage,
time-window for averaging or RSSI thresholds. Additionally,

3 Youtube demo link: https://youtu.be/zYAshWFn75k

https://youtu.be/zYAshWFn75k


(a) (b) (c)
Fig. 4: (a) Magnitude-phase profile, with the top plot showcasing
the magnitude and bottom plot the phases across 4 receivers and 234
subcarrier frequencies. (b) A simplified visualization of the predicted
bearing of the signal (white arrow) in the local coordinates of the
access point. (c) Bearing-range likelihood profile, with the red-line
indicating the strongest received path, and hence the bearing of the
signal. These images are visualized via the ROS RViz software in
realtime

a simple visualization of the received signal’s bearing (white
arrow) in the access point’s local coordinates is shown in
Figure 4(b).

Additionally, the Feature-extraction node open-sources
state-of-art bearing estimation algorithms [20], [1], [21] to
measure the angles of arrival and departure of the received
signal. These measurements are processed in real-time and
exposed as ROS topics via custom WiFi-bearing messages,
rf msgs/Bearing.

This brief description showcases the ease of use of
WiROS’s WiFi sensor for real-time data collection, processing,
and debugging, improving state-of-the-art systems that require
cumbersome data file post-processing. In addition to this
description, extensive setup and usage documentation is
provided with the code-repositories2. The next section will
provide further specifics about the implementation details and
discuss the specific process block in Fig. 3.

B. CSI Node: Middleware to integrate with ROS
The ‘CSI node’ is modularly written in C++, allowing it to
interface with multiple CSI extraction toolkits (the black box
in Figure 3). It is currently tested with Nexmon-CSI’s [11]
Asus RT-AC86U [23] platform as it is the most capable extant
solution for COTS CSI extraction. The CSI Node is tested
on ROS Kinetic, Melodic, and Noetic. It runs out-of-the-box
on a Raspberry PI, or via a dedicated Ethernet connection to
a central server.
Data Path: WiROS takes as input raw CSI data packets
from the black box (shown in red arrows) via a UDP socket
configured over an Ethernet connection by the ‘Setup Data-
path’ block. The ‘Decode Data’ block decodes these raw WiFi
data packets to expose the measurements in easy-to-consume
rf msgs/WiFi format.
Control Path: The CSI-node additionally provides different
radio configurations via API calls. This abstracts out the
specific hardware implementation for the end user. A dedi-
cated ‘Sensor Config’ submodule configures the underlying
WiFi radio. It requires ‘login’ params to access the WiFi AP,
‘channel’ params to configure the WiFi frequency-channel and
bandwidth, and ‘packet’ params to configure the transmitter’s
beacon rate or filter WiFi data packets.

Functioning in parallel, two sub-modules, if enabled via

the ‘setup’ params, are responsible for tracking and adjusting
the frequency-channel used by the AP. The ‘AP scanner’
periodically scans the different channels and determines the
closest WiFi AP to re-configure the WiFi radio by exposing
the information via the rf msgs/AccessPoints message.
The ‘Channel switching’ sub-module handles switching the
channel with minimal sensing downtime (less than 500
milliseconds).

C. Quick and easy calibration
Calibrating a sensor is a necessary first step and must be
easy to perform. Generally, the calibration can vary for
different frequency-channels and is unique for each hardware.
This necessitates an easy-to-deploy and accurate calibration
framework for the tractability of the WiFi sensor. This section
will elaborate on the one-time wireless calibration system
provided via a Python3 script in the ‘Feature-extraction’ node.
Usage: To calibrate our raw WiFi messages collected in
the previous section, we must apply independent phase
corrections across each antenna and frequency measurement.
To compute this calibration, first, configure a receiver and
transmitter to a specific WiFi frequency-channel as discussed
in Section II-A. Next, collect raw CSI measurements by
placing a WiFi sensor ‘receiver’ on a robot and a WiFi sensor
‘transmitter’ in a static predefined location in space. Instead of
an ASUS WiFi sensor, a phone or laptop may be configured
to transmit ‘ping’ packets. In this setup, we are looking
to calibrate the WiFi sensor receiver. Run the robot in any
pattern in relatively free space, within a 5 m radius of the
transmitter, and collect the robot odometry measurements (r⃗t)
as nav msgs/Odometry and the WiFi measurements (Wt)
as rf msgs/Wifi from the CSI node. Note the location
of the transmitter (⃗t) in the robot’s generated map (often
visible when using a LiDAR) and measure the relative antenna
locations (⃗ai) on the receiver. This data can be input into
the calibration framework to generate the wireless calibration
matrix, provided with the ‘Feature-extraction’ Node2.
Behind the scenes: From our discussion so far, we need to
find a phase calibration matrix C,

C = exp(jΦ) ∈ C4×Nf ,

to calibrate the phase measurements across the 4 antennas
and Nf frequencies, where Φ ∈ R4×Nf . Given a raw
CSI measurement from the CSI Node, Wt ∈ C4×Nf , the
calibration is applied as

W cal
t = C ⊙Wt,

where ⊙ is the Hadamard (element-wise) product.
Using the robot poses (r⃗t = (rxt , r

y
t , r

θ
t ) ∈ SE(2)) and

transmitter location (⃗t ∈ R2), we first compute the expected
ground truth bearings (θt). These can then be converted to
expected WiFi CSI measurements (Ŵt ∈ C4×Nf , implicitly
assuming 4 receive antennas).

θt =
π

2
−

(
arctan

(
ryt − ty

rxt − tx

)
− rθt

)
Ŵ i,j

t = exp

(
2πj

λ
[cos(θt), sin(θt)]⃗ai

)
∀j ∈ [1, Nf ],∀i ∈ [1, 4]



where, a⃗i is the relative location of the ith antenna with
respect to the first antenna; consequently, a⃗1 = 0⃗. λ is the
wavelength of the center frequency for the WiFi channel in
consideration. Assuming a strong line-of-sight path signal
is present in our measurements, we can expect the phases
∠Ŵt ≈ ∠W cal

t . Note that our assumption is reasonable given
that the calibration data is collected in a relatively open
environment with no blockages to the signal. Consequently,
we can suppress the phase difference induced by bearings as

W sup
t = Wt ⊙ conj(Ŵt)

This leaves the remaining calibration phase C in W sup
t .

However, each WiFi measurement may have multiple reflected
paths and hardware-centric Gaussian noise, which have not
been adequately suppressed. However, we have two hints.
One, reflections are inconsistent across different locations;
two, averaging can suppress Gaussian noise. Hence, the best
calibration estimate is the strongest remaining component in
the suppressed W sup

t measurements. We can leverage Princi-
ple Component Analysis to extract this strongest component
in our calibration data as

W flat
t = flatten(W sup)t), W flat

t ∈ C4Nf

W =
[
W flat

0 W flat
1 · · · W flat

T

]
U,S,V = SVD(W)

Φcoarse = ∠reshape(U0), Ccoarse = exp(jΦcoarse)

where ‘flatten’ converts the matrix into a vector, SVD
computes the full singular-value decomposition, ‘reshape’
converts the vector back into a matrix of the original
dimensions, and ∠ computes the phase of the complex
numbers. U0 is the first and strongest principal component of
W. However, as indicated, this calibration is a coarse estimate.
The expectation is for the calibration matrix to consist of
unit-norm elements, but the principle component, U0, is a
unit-norm vector, violating this property. Hence, we need to
re-project Ccoarse onto a valid space of calibrations. To find
a valid calibration, Cfine, that is close to Ccoarse, we note
that Cfine must be orthogonal to the other vectors in U, so
we try to find a fine-tuned calibration Φfine which has the
lowest norm when it is projected onto U[1:].

Φfine = min
Φ

||UT
[1:] flatten(exp(jΦ))||

2
2

Cfine = exp(1jΦfine)

where U[1:] is the orthogonal space, and we minimize for Φ
by leveraging the Levenberg-Marquardt [26] algorithm with
an initialization of Φcoarse. Via this fine-tuning process, we
recover the wireless phase calibration matrix Cfine. Later in
Section III, we will evaluate the accuracy and versatility of
this calibration across different WiFi frequency channels and
hardware restarts.

D. Feature-extraction Node: Library of CSI processing tools
The measurements from the ‘CSI Node’ can be leveraged to
measure signal path parameters like signal strength, angles
of arrival or departure, the velocity of the transmitter, or
locations of reflections in the environment. However, angular
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Fig. 5: Stability of WiFi measurements: WiFi measurements
collected over 18 hours showcases (a) phase stability: CSI phase at
DC frequency for 4 receiver antennas and, (b) magnitude stability:
CSI spectrogram across all transmitted frequencies for an 80 MHz
bandwidth signal.

information can be readily measured from a single packet
and provides a quick way to realize the advantages of WiFi
measurements. In this vein, we open-source a large set of state-
of-art bearing estimation tools [20], [21] and CSI filtering
techniques.
Usage: Deploy WiROS’s receiver on the robot and compen-
sate the hardware as previously mentioned. We can set up
WiROS’s transmitter or monitor existing WiFi packets in
the environment to measure the CSI measurements using
the CSI-Node. Leveraging these CSI measurements, we can
compute the angle of arrival (AoA) of a signal at the receiver
(robot-side bearing) and the angle of departure of a signal at
the transmitter (AP-side bearing) from a single WiFi signal
received at the robot. These bearings would be in the robot’s
and the AP’s local coordinate frames and are exposed via
the rf msgs/Bearing ROS topic. The ‘Feature-extraction’
node also generates specialized visualizations to help debug
the wireless channel, as discussed in Section II-A.
Behind the scenes: The ‘Feature-extraction’ node is written in
Python3, as this allows easy modification by users to support
their specific sensing needs. It collects and sorts CSI messages
and passes them to a data consumer object, collating the CSI
measurements from a specific target device and using them
to generate bearing estimates. We provide several example
consumers which run a variety of AoA algorithms, from a
very compute-efficient bearing-only algorithm that can be
run in real-time to computationally heavy algorithms like
SpotFi[20]. Additionally, we note that CSI measurements can
often fluctuate during motion because of dynamic reflections
in the environment. In situations where we need to measure
the direct signal path, these fluctuations can be detrimental.
Hence, to obtain reflections-suppressed CSI measurements,
we also implement an averaging technique from our prior
work [1]. Supporting math for these algorithms is provided
with the documentation2.

E. Extending WiROS to other CSI toolkits
The CSI Node and Feature-extraction Node form the corner-
stones of WiROS. The CSI Node interfaces WiROS with the
underlying hardware, whereas the Feature-extraction Node
open-source state-of-the-art post-processing algorithms for
the WiFi CSI measurements. WiROS currently extends the
Nexmon CSI extraction toolkit [18], making specific API
calls to configure the underlying hardware. However, we can
follow a similar design template to adapt WiROS to other CSI



toolkits [12], [13] as well. Additionally, we encourage future
hardware platforms and CSI-extraction toolkits to prioritize
exposing data via a UDP socket. Consequently, these newer
platforms can enjoy ROS support with minimal changes to
WiROS’s ‘Sensor Config’ and ‘Decode data’ modules.

III. VERIFICATION STEPS

In the following section, we will use the Asus AC86U [23]
(henceforth just WiFi sensor) as an example to verify the
various aspects of WiROS. We deploy this WiFi sensor on a
Turtlebot 2 platform [27] equipped with a Hokuyo Lidar [8]
and Realsense Camera [7]. We collect all data on a Thinkpad
13” Laptop [28]. Specifically, we care about the stability
of our signal measurements, the efficacy of our wireless
calibration techniques, and the performance of the bearing
estimation and automated channel switching feature. These
sets of experiments provide a guideline for testing a WiFi
sensor. If the specified Asus hardware is used, the reader
should expect similar results as showcased. However, WiROS
can be easily extended to other hardware systems as well, in
which case, the following sets of verification can be performed
for the new sensor.

A. Measurement stability
First, we ensure our sensor provides stable measurements
over time, unaffected by the board’s temperature differences
and minor disturbances to the setup (as may be expected
when the sensor is deployed on the robot). Two WiFi sensors
were placed in an environment. One was set up to transmit
data at 1 Hz and another to receive this transmitted data (see
Section II-A), which were subsequently stored in a bag file.

In Figure 5(a), we showcase the phase stability across
antennas at the center frequency over an 18 hour run. We
plot the same for the magnitude of the received signal
(in color intensity) across the different frequencies (in the
y-axis) for a single antenna over time (in the x-axis) in
Figure 5(b). These plots show little variation in the phase
and magnitude measurements over time, indicating that the
CSI measurements are reliable and consistent.

B. Calibration efficacy
Next, we must effectively correct hardware biases and offsets
to measure accurate bearings. Specifically, we observe that
without appropriate calibration, our median bearing errors can
be 115◦. However, post calibration, we can expect median
bearing errors of 5.3◦. Hence we provide a wireless calibration
system as described in Section II-C as a core part of WiROS.
However, this technique must work consistently for different
WiFi channels and upon device reset.

We collect the data as explained in Section II-C to confirm
the calibration performance. We place an additional sensor in
the environment sending beacon packets and another on the
robot receiving them. We run the robot in a random pattern,
collecting CSI data within bag files, as shown in Figure 7(a).
This is additionally done on different WiFi channels. Next,
we re-run these experiments in different environments (shown
in Figure 6) to test the calibration efficacy.

Figure 7(b) shows bearing errors across different channels
after the APs were reset post collecting the required training

data. For this experiment, we measure calibration for different
channels and test the quality of these calibrations by collecting
a test dataset after restarting the AP by characterizing the
bearing accuracy. We observe similar performance across all
the 80 MhZ WiFi channels [29]. Additionally, note that these
calibration properties are specific to the Asus hardware used
in this verification process. The wireless calibration procedure
provided is agnostic to hardware, but it is imperative to take
these verification steps when working with different hardware.
C. Bearing Estimation accuracy of open-sourced algorithms

Post calibration, we have corrected phase measurements
which can be used for bearing estimation. In the previous
section, we presented some bearing results to showcase
calibration efficacy. However, we glossed over the specific
algorithms used. As discussed in Section II-D, we open source
implementation of prior bearing estimation techniques [20],
[21]. More details of these algorithms can be found in
our documentation of the Feature-extraction node2. The
accuracy of these algorithms is shown in Figure 8(a). In these
experiments, we ensure to include only received packets that
have received signal strength stronger than −65 dB. This
allows us to reject outliers. However, it is important to note
that this threshold is a hardware-specific number, and other
hardware systems may require different thresholds.
D. Feature: Automated channel switching

We test the channel switching feature as explained in Sec-
tion II-A in an enterprise network deployed in our university
building in Figure 8(b). The robot traverses twice around the
environment, shown in overlapping trajectory, in a single
run. The colors represent the different APs deployed as
part of the enterprise network, and the colors along the
path indicate the specific AP WiROS’s sensing channel is
tuned into. The figure showcases that at different robot
locations, WiROS appropriately tunes to the nearest AP,
ensuring that the robot can use WiFi-sensing packets from
line-of-sight access points. Furthermore, channel switching
also depends on the path taken in the environment, which is
apparent from the different behaviors across the two traversals.
WiROS prioritizes continued interaction with the current AP
rather than frequent AP switching to reduce downtime and
consistency of data collection.

IV. CASE-STUDIES
Next, we present three case studies to showcase the applicabil-
ity of WiROS’s various features. The corresponding Python3
scripts to get started with WiROS and these case studies are
provided within the ‘Feature-extraction’ node.
A. Localization to combat Kidnapped Robot Problem

In the kidnapped robot problem, a robot carried to an arbitrary
location in the environment is lost as it fails to re-localize
within the global map. This is an additional challenge in GPS-
denied scenarios where a robot does not have a global location
estimate, which is common in indoor scenarios. However,
some works [31] have used WiFi estimates to tackle this
problem by providing global location estimates.

WiROS can be leveraged to solve the kidnapped robot
problem in indoor settings by leveraging existing deployed
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Fig. 6: Testing Environments for case-studies (a) Kidnapped robot problem and (b) IoT Localization. The purple and orange boxes show
the robot (with WiROS’s receiver) and WiROS’s transmitter. In (b), the colored photo frames (blue, green and red) correspond to the
camera viewpoint in the 2D top-down map.

(a) (b)
Fig. 7: Consistency and accuracy of calibration (a) Robot path
and transmitter location (blue circle) to calibrate the robot’s WiFi
sensor in 3×3 m, (b) Bearing errors when calibrated across different
channels, after reset and channel switching

WiFi infrastructure as shown in Figure 8(c, i). By configuring
WiROS’s receiver to sense all WiFi packets in the environ-
ment, we can collect WiFi measurements from all nearby
APs. This is made easier by the provided automated channel-
switching feature. Next, WiROS can estimate the robot’s
bearing in the AP’s frame of reference by leveraging the
angle of departure (red arrows). These AP-sided bearings can
be subsequently used to triangulate the robot. We need prior
knowledge of the AP’s location, antenna array geometry, and
calibration metrics (which can be wirelessly computed using
the ‘Feature-extraction’ node) to deploy this application. As
a test, we deploy 4 access points in a 5× 10 m environment
(Figure 6(a)) and observe a median localization accuracy of
1.2 m.
B. Odometry-correction in SLAM systems

Erroneous sensor measurements made by odometry sensors,
cameras, or Lidars can create drift in a robot’s predicted loca-
tion. These drifts are corrected by applying “loop closures”,
where a robot leverages the intuition that it must predict
similar location estimates when revisiting previously seen
spaces. However, due to perceptual aliasing [5], different
locations in the map may look similar, creating ambiguity
when detecting loop closures. However, recent works [1], [6]
have looked at fusing WiFi-bearing measurements to address
the problems with visual loop closures.

Again, WiROS can be leveraged to solve the issues with
sensor drift during loop-closure as shown in Figure 8(c, ii).
We can configure WiROS’s receiver at the robot to collect
WiFi measurements from APs in the wild. Subsequently,
the measured robot-sided and AP-sided bearings from these
WiFi measurements (red and blue arrows) can be fused
with robot odometry in a factor graph to correct for drifts.
Sensor fusion is made easy by WiROS as WiFi-based bearing
measurements are readily available as ROS topics and time-
synchronized with other sensor measurements on the robot.

In Fig. 8(d), we compare WiFi-based bearings fused with
odometry from Visual-Inertial odometry (WiFi+VIO, no loop-
closures) and a state-of-the-art Visual-inertial SLAM system,
with loop closures enabled [30] (VIO only). We observe a
30% reduction in median error due to improved robustness
to visual aliasing.

C. IoT device mapping to aid device management
Finally, instead of localizing a robot in an environment (which
is carrying a WiFi transceiver), we can consider the reverse
problem of localizing WiFi transceivers in an environment.
This is an important problem for IoT device management [32],
where localizing various devices in a large space within
a common map is necessary to aid building managers in
maintaining the different IoT devices. Alternatively, recent
works [25] have looked at localizing, potentially rogue, IoT
devices to ensure the privacy and security of users.

WiROS can be easily leveraged to localize all WiFi IoT
devices in a given space, as shown in Figure 8(d, iii). A
robot deployed with WiROS’s receiver, scanning all channels
and enabling an all-pass MAC filter, can capture WiFi
measurements from all WiFi-based IoT devices in space.
Subsequently, the robot-sided bearing measurements (blue
arrows) over multiple robot locations can be leveraged to
triangulate the IoT devices. As a demonstration, we deploy
WiROS’s receiver on the robot and collect CSI from 3 WiFi
transmitters deployed in a 10× 5 m environment. Next, by
utilizing the bearing estimates provided by WiROS, we can
localize these devices with a location accuracy within 2 m.
The real-time operation of this case study is provided as a
supplementary video3.

V. DISCUSSION AND FUTURE WORK

WiROS’s primary deliverable is to make accurate WiFi-based
sensing widely accessible for robotics use cases. Consequently,
this work largely focuses on furnishing the calibrated physical
Wifi channel measurements and bearings as a key feature to
extract from these measurements. These WiFi-based bearings
can be applicable for correcting errors accrued in online
SLAM, re-localizing robots after sudden changes to their
locations, or localizing WiFi transceivers in the environment
for IoT management. However, the larger motivation of
this work is to facilitate exploring the advantages of RF-
based sensing within robot systems. This could be for
robot exploration, collision avoidance, or motion planning.
Additionally, we would like WiROS to serve as a template for
future networking researchers building CSI-extraction tools
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Fig. 8: (a) Bearing estimation accuracy across algorithms, (b) WiROS can automatically detect and lock on to the nearest AP (labeled by
color) while exploring the environment. (c) Case-study overview: (i) Lost robot can leverage WiROS to localize itself using the AP’s in
the environment. (ii) Drift during loop closures can be corrected using two-way bearings [1]. (ii) IoT devices can be localized in the
environment by leveraging WiROS. (d) Absolute Trajectory error when incorporating WiFi-bearings compared with Kimera [30]

to continue to provide support for newer WiFi protocols, with
an immediate future step of extending support to upcoming
802.11ax WiFi protocols [12], [13].
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