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Abstract—Delivering Virtual Reality (VR) content wirelessly
involves projecting a 360-video into a 2D format and then
encoding it to satisfy the wireless bitrate requirements. However,
the popular equirectangular and cubemap projections offer little
flexibility to adapt to changing bitrates and headset motion. In
this work, we show that the truncated square pyramid projection
offers high flexibility for network and headset motion adaptation.
We adapt by tuning a truncation parameter that controls the
video quality for different spatial regions in the 360-video.
Depending on the video, our scheme improves average video
quality by up to 1.1dB in PSNR and up to 4.6 in VMAF score
compared to a non-adaptive baseline.

Index Terms—Video coding, 360-video, projection

I. INTRODUCTION

Virtual reality (VR) and augmented reality (AR) deliver
immersive panoramic 360◦ video experiences. Due to the large
bandwidth requirement [1], efficient 360◦ video encoding and
streaming are required for delivering 360◦ videos wirelessly.

At any given time, a user has a limited field of view, looking
at a region known as the viewport, which typically occupies
only 15% of the original 360◦ video [2], [3]. Transmitting
only the viewport region instead of the whole video can yield
high-quality VR streaming while satisfying stringent wireless
network constraints. However, with this naive strategy, real
users will see blank screens as they move their heads and
gaze in different directions. With head motion prediction,
the system can fetch the new viewport in advance, so the
user enjoys a seamless experience. This requires predicting
user head motion over the 1-2sec needed to fetch a viewport
from the server. Within this time, users can move in complex
ways, so prediction accuracy is ≈58-80% [4], [5]. Thus,
new 360◦ video streaming solutions, beyond viewport-adaptive
streaming [5] are needed to provide robustness to viewport
prediction error while saving bandwidth.

We present VRProj, a system that leverages the efficient
truncated square pyramid (TSP) projection format for 360◦

video. VRProj differs from existing TSP-based 360◦ video
streaming solutions by introducing flexible truncation and
location switching to adapt to user head motion.

The paper is organized as follows. In Section II, the problem
background and design intuition are presented. In Section III,
we describe the detailed design of the system. We discuss
evaluation results and provide conclusions in Section IV.

II. BACKGROUND AND MOTIVATION

A 360◦ video represents a scene that covers an entire 3D
sphere but is captured in multiple 2D videos and stitched into a
2D video which can be efficiently encoded by traditional 2D
codecs, e.g., H.264/AVC [6], H.265/HEVC [7]. We discuss
three projection methods: equirectangular projection (ERP),
cubemap projection (CMP), and pyramid projections [8],
[9]. Fig. 1 shows 360◦ video in various projections. While
popular for its holistic view of the omnidirectional content,
ERP inefficiently maps a 3D sphere to an unwrapped 2D
plane. This results in inefficiencies which increase farther
from the center of the video. CMP mitigates inefficiency by
mapping the 3D spherical content to a 2D unwrapped cube;
3D spherical content is divided into six regions, one for each
cube face. Inefficiencies occur along the face boundaries, a
great improvement over ERP. CMP is popular with commercial
video providers such as YouTube [10].

To stream 360◦ video over a varying channel, tiling-based
systems are popular [4], [11]–[24]. These methods divide
a video into smaller rectangular tiles. To adapt to varying
network conditions, video tiles are encoded to various quality
levels, and only the tiles in and around the predicted viewport
location are streamed with high quality. The remaining tiles
are streamed with low quality. Current tiling-based systems
rely on ERP projection due to its simplicity.

An alternative approach to achieve viewport-adaptive qual-
ity is to process the omnidirectional content into a format
where only a central viewport region has the highest qual-
ity. We focus on pyramid projection [25], a representative
viewport-adaptive projection. Unlike ERP and CMP, in pyra-
mid projection, only a section of the 3D spherical content
is preserved at high quality, and other sections continuously
decrease in quality. This is achieved by mapping the high-
quality section to the base of a 2D unwrapped pyramid, with
other sections as the pyramid sides. Pyramid projection is
intrinsically viewport-adaptive; content not in the high-quality978-1-6654-7318-7/22/$31.00 ©2022 IEEE
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Fig. 1: 360o video is projected from a sphere to a 2D format in different projections.
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Fig. 2: TSP can be constructed with different levels of flexibility.

viewport section is represented with low quality. While allow-
ing for viewport adaptivity through projection, the pyramid
lacks flexibility. For a given high-quality region size, geometric
limitations remove control over the quality of the other regions.
The truncated square pyramid (TSP) projection [26] improves
on this aspect.

TSP projection may be understood as a modified CMP.
Instead of allocating an equal number of pixels to every
cube face, a single region is favored over the others. This
results in an intrinsic viewport-adaptive quality while also
allowing changes to the quality of non-favored regions. The
location parameter (LP) adjusts the location of the favored
region, while the truncation parameter (TP) changes the
degree of favoritism. The TSP projection allows viewport-
adaptive projection direction changes while also allowing for
fine-grained control over the quality of non-favored regions
using TP.

Prior work on viewport-adaptive TSP projections [26], [27]
considers switching only the location parameter for viewport
adaptation; the flexibility introduced by a truncation parameter
was not explored. Fig. 2(a) illustrates the TSP configuration
in a proposal to JVET [26] ("JVET-TSP"). The side faces
are truncated in a fixed way. Fine-grained control over the
quality of non-favored regions through adapting the truncation
provides additional opportunities for optimization. VRProj
designs a novel algorithm to find the best truncation and
location parameters adapted to viewport location and motion.

III. DESIGN OF VRPROJ

A TSP projection, constructed from a CMP projection,
inherits the six CMP faces: the front face, side faces (left,
right, top, bottom), and back face as shown in Fig. 2(b).
The construction requires two parameters: LP determines the

location of the front face in a sphere, and TP determines the
extent of truncation. For simplicity, we focus on variations
along the yaw axis1. LP ∈ [−180◦, 180◦] must be decided
before projecting a sphere on a cube such that the LP lies at
the center of one face of the projected cube; this is the front
face of the resulting CMP frame. We then truncate the CMP
side faces into trapezoids according to the TP value; given
cube face edge length L and TP= α, both the trapezoid’s
height and shorter parallel side will have length αL. These
transformations use uniform subsampling [29]. We obtain the
back face of TSP by 5X downsampling the cubic back face.

TSP provides a mechanism to adapt to a moving view-
port. Changing LP allows coarse adaptation to the view-
port location, while TP allows finer adaptation. Fig. 3 il-
lustrates the mechanism for the case of 4 LPs available
(0◦, 90◦, 180◦,−90◦). With the initial viewport located at 0◦,
i.e., centered at the TSP video’s front face, we choose a
low TP=0.2 to heavily truncate the video side faces. As the
viewport moves towards 45◦, it significantly overlaps the side
face, which would limit the quality if a low TP were used.
So, we increase TP to 0.4. Next, as the viewport crosses 45◦,
a large piece of the viewport lies in the right side face. So
we change LP to 90◦ to make the right face become the new
front face, as shown in the fourth case of Fig. 3.

Viewport movement

= Viewport 

TP=0.2 gets 
suboptimal

TP=0.4 
adaptation

Location 
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0o 180o
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Fig. 3: TSP viewport adaptation with 4 LPs and 2 TPs.

A. Optimizing Location and Truncation Parameter

A bitrate target can be met by using TP to control an
adaptive projection, or using the quantization parameter (QP)
to control the quantization of a uniform encoding. A higher TP
results in a raw video that can then be heavily quantized (high
QP) to satisfy the bitrate constraint. Alternatively, the same

1A user is more likely to move her head horizontally than vertically [28].



constraint could be met with a lower TP producing a smaller
raw video which then can benefit from low quantization errors
(low QP), resulting in high quality for the viewport region.
There is a tradeoff in selecting specific TP and QP values.
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Fig. 4: VMAF versus yaw angle for different TP values (video
encoded at 5 and 10 Mbps). We use this plot to formulate the mapping
of viewport orientation to TP.

We analyze the TP-QP tradeoff in Fig. 4. To evaluate
perceptual quality, we use Video Multi-Method Assessment
Fusion (VMAF) [30], a machine learning-based metric pro-
posed by Netflix. It ranges from 0 to 100, with 100 denoting
perfect perceptual quality compared to the reference video.
Fixing the TSP video’s front face to 0◦ and truncating the
left and right side faces with TP=0.2, 0.4, 0.6, 0.8 and 1,
we extract the viewport at various static locations (yaw angles
from 0◦ to 45◦). From Fig. 4, we observe that TP=0.2 provides
the best VMAF when the viewport is aligned with the front
face because heavy truncation of side faces allows a lower QP
value, thus higher front face quality. However, when TP=0.2,
VMAF degrades sharply as the viewport moves away from
the front face. With higher TP values, VMAF degrades more
gradually with yaw angle. In comparing TP of 0.4 and TP of
0.2, the VMAF score for TP=0.4 is lower by 3 (out of 100)
for the front face, the scores are about equal at roughly 10◦

of viewport motion to the right, and beyond 15◦, TP=0.4 is
consistently better. As TP above 0.4 does not provide useful
trade-offs, our system uses only TP=0.2 and TP=0.4.

This mapping of viewport location to TP value is based
on empirical evaluation of a 360◦ video. It can be done
off-line at the server once and stored for different videos
and bitrates, causing no overhead to real-time streaming. We
observe through evaluation on other eight videos that the
mapping is resilient to video content and to two average
encoding rates (5, 10Mbps). The TP value can be selected
based on the predicted viewport location by a table look-up
in real time.

Another observation (Fig. 4) is that truncation sub-sampling
tends to dominate the quality loss in the viewport as the
viewport moves away from the front face. This is observed
in other videos and at higher bit rates. This can be mitigated
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Fig. 5: VRProj’s decision rules for LP and TP selection. FPS denotes
the set of frames of the next video chunk.
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Fig. 6: Adaptive TP with head movement when TP is not [0.2, 0.2].

with a finer granularity of LP, as the viewport after location
switching is less likely to reach regions heavily distorted by
truncation. We use 8 LPs spaced 45◦ apart.

B. Awareness of head movement direction

Exploiting head movement direction can further reduce the
file size by assigning different TPs to left and right faces. If
the head is moving to one side, a higher TP could be assigned
to this side. Our adaptation is summarized in Fig. 5. The front
face of the next chunk is rotated by LP such that the mean
value of the predicted viewport lies within ±22.5◦. Then, we
consider four TP combinations: [0.4, 0.4], [0.4, 0.2], [0.2, 0.4],
and [0.2, 0.2]. We first decide if the head motion is static
enough to use TP of 0.2 on both side faces. Using Fig. 4,
we choose ±10◦ as our TP decision boundary. If the viewport
is predicted to be within ±10◦ for every frame in the next
video chunk, TP of [0.2, 0.2] will be assigned. When this is
not satisfied, TP of [0.2, 0.4] or [0.4, 0.2] will be considered,
depending on yaw, the mean predicted viewport yaw angle
over all frames in the chunk. We consider that the head is
moving to the right (left) if the actual yaw angle is larger
(smaller) for the last frame of the previous video chunk than
for the first frame of that chunk. TP of [0.2, 0.4] will be
assigned when the head is moving right and yaw ≥ 0; TP
of [0.4, 0.2] will be assigned when the head is moving left
and yaw ≤ 0 (see Fig. 6). Lastly, when none of the above is
satisfied, TP of [0.4, 0.4] is used since we are not confident
that the future viewport will be static nor that it will be on a
particular side.

IV. EVALUATION

We evaluate VRProj with a head movement trace-driven
simulation with fixed network conditions. The key results are
that when the viewport information is assumed to be perfectly
known, VRProj on average has 2 (out of 100) of VMAF
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Fig. 7: Examples of video frames from our 360◦ video dataset.

score improvement over the JVET-TSP system. With a simple
viewport prediction, the improvement in VMAF is 1.5.

Video Dataset: We use nine 360◦ videos provided by ITU-
T [31]. Captured on various platforms while driving, walking,
or skateboarding, the content includes sightseeing, nature, and
sports. The videos are in uncompressed YUV format, with
sizes from 10 to 30 GB. All videos have 8192x406 resolution
and 60 FPS, except for “Balboa” and “Broadway” (6144x3072
60FPS), and “Chairlift” (8192x4096 30FPS). Sample frames
are in Fig. 7. The dataset is in ERP format, which we convert
to CMP using 360Lib [32].

User head movement dataset: We evaluate VRProj on a
dataset of user head movement traces from [33], with a large
variety of head motions from 0◦/sec to 60◦/sec. For each video,
we assign one trace from the dataset as if it were the head
movement of users watching that video.

End-to-end results: We implement VRProj in approxi-
mately 1000 lines of C++ and Matlab code. We emulate
DASH-based [34] video streaming for both VRProj and the
JVET-TSP system; a collection of TSP video is generated off-
line and adaptively fetched by the client during streaming.
The server stores video chunks encoded at different rates.
Videos are encoded with FFmpeg x265 codec with 2-pass
average bitrate control. JVET-TSP stores video at 8 different
LPs. For VRProj, each video is stored in 8 different LPs
and 4 combinations of TPs. We evaluate VRProj at 5 and
10 Mbps in two modes, omniscient (Omni) and predictive
(Pred). Fig. 8 provides an overview. System parameters (LPs
and TPs) are decided each second. With Omni, parameters are
based on the user’s actual viewport orientation in the future.
With Pred, parameters are decided from linear regression
based viewport prediction. Fig. 8(a) demonstrates the viewport
prediction in Pred mode. Fig. 8(b) plots the LPs assigned for
each chunk with respect to the front face orientation in the
original dataset. Fig. 8(c) and (d) plot the TPs chosen for each
video chunk. Fig. 8(e) plots the final viewport direction the
user will experience after switching the front face orientation
according to LP.

VRProj outperforms JVET-TSP in both Omni and Pred
modes, as shown in Table I. In Omni, the gain of VRProj over
JVET-TSP is greater since LP and TP adaptation leverages
the knowledge of head movement. VMAF has a strong linear
correlation with subjective Differential Mean Opinion Score
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Fig. 8: VRProj adapts LPs and TPs to head movement. "Omni" and
"Pred" stand for omniscient and predictive simulation.

Video 5Mbps 10Mbps
Omni Pred Omni Pred

Balboa 1.33 1.06 1.04 1.04
Broadway 1.71 1.57 0.92 0.88
Chairlift 1.91 1.28 1.26 0.57
Gaslamp 0.88 0.20 0.42 -0.13
Harbor 1.03 0.16 0.72 -0.19

Kite 2.96 2.46 2.28 1.76
Landing 1.73 1.34 1.50 1.04

Skateboard 2.30 1.54 2.10 1.51
Trolley 4.57 4.11 2.81 2.57
Average 2.05 1.52 1.45 1.01

TABLE I: VMAF gains of VRProj over JVET-TSP.

[30], [35], so this improvement indicates that VRProj can
provide better perceptual quality. VRProj also outperforms
JVET-TSP in peak signal-to-noise ratio (PSNR), with average
gains of 0.39dB (Omni) and 0.24dB (Pred) at 5Mbps, and
0.44dB and 0.21dB at 10Mbps. PSNR gains for individual
videos ranged from 0.2dB for Balboa to 1.1dB for Trolley.

V. CONCLUSION

We presented an adaptive TSP projection scheme that op-
timizes the degree of truncation and quantization to improve
video quality for a given headset motion. Both VMAF and
PSNR results indicate that the gains can be significant for
certain videos, while some improvement was found for all
9 videos tested. Future work could explore content-based
adaptivity in the TSP system, or adding head motion adaptivity
to tiling-based [4], [11]–[24] approaches.
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