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Abstract: Social distancing has been the key factor which has
helped control the COVID-19 pandemic spread. We present BluBLE,
which utilizes Bluetooth Low Energy (BLE) based mobile sensing
to help monitor these social distancing protocols. Specifically, we
formulate the problem in two parts – spatial and temporal social
distancing. The spatial distancing formulation aims to enforce the
6 feet distance recommended by various public health organization
around the world. The temporal distancing formulation aims to
inform and prevent users from entering high-occupancy regions
(hotspots) in buildings. BluBLE achieved more than 80 % classifica-
tion accuracy in both the tasks, that is, predicting if a user is within
‘6’ feet of another user as well as characterizing the user’s location
within a particular hotspot.

CCS Concepts: • Human-centered computing → Ubiquitous
andmobile computing; • Information systems→ Spatial-temporal
systems; • Networks → Location based services.
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1 Introduction
The worldwide outbreak of COVID-19 in early 2020 has raised
increased awareness on effectiveness of social distancing for con-
trolling the spread of the COVID pandemic [2]. As trivial as the
guidelines may seem – maintaining the 6 feet distance and avoiding
crowded spaces – in practice, it is difficult to guarantee an effec-
tive social distancing paradigm. Hence, governments around the
world have utilized mobile technologies to help enforce these social
distancing norms.

One of the most popular usage of such technologies has been
the digital contact-tracing mobile applications. The current de-
ployments, which either utilize GPS based location sensing, or
BLE-connectivity based proximity sensing often register contacts
between people even if they are as far as 20 ft from the other person.
This fails to meet the requirement for fine-grained contact-tracing
to establish ‘true’ contacts between two individuals who are closer
than 6 feet. This requirement arises from the fact that the disease
transmits via airborne water droplets and aerosol particles, and we
term this spatial social distancing.

Due to the evolving nature of these social distancing norms, this
spatial problem also gains a temporal flavor. In the latter stages
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of the pandemic, policymakers are often forced to relax the so-
cial distancing norms, in order to re-open the economy and get
back to normalcy. Here, it becomes critical not only to passively
track the contacts, but also to collate information over time to
get feedback on the implemented policies and take pre-emptive
actions to avoid a second wave at the same time not hindering
the re-opening process. An important application of these mobile
technologies for aiding temporal social-distancing norms lies in
identifications of new crowded hotspots being formed, in order
to gauge the effectiveness of evolving social distancing policies.
Furthermore, understanding the temporal distance between users
in the same space opens up new doors to better understand COVID-
19’s transmission over fomite surfaces. Hence, peering through
this dimension of time can help detect crowded hotspots, in turn
guiding policy decisions on lock-downs and answering existing
questions on COVID transmission.

BluBLE not only demonstrates increased accuracy in fine-grained
spatial contact tracing, but is one of the first to target the temporal
aspect by utilizing a novel hotspot detection mechanism. Keeping
in mind widespread deployment, a critical requirement with such
solutions is that the system must work robustly across different
environments and mobile phone models. BluBLE aims to build such
a robust system by performing crowdsourced data collection, and
having classification accuracies for both the spatial and temporal
tasks exceeding well over 80%, a set requirement to enforce effective
contact tracing solutions [3].

2 Design
Next, we present BluBLE’s proposed solutions to meet these strin-
gent spatial and temporal social distancing requirements. For the
first requirement, BluBLE attempts to classify if two people are
within a distance of 6 feet from each other, as well as tracking the
time of this contact. In the second requirement, we are looking to
first determine, in an unsupervised manner, the number of crowded
spaces (hotspots) in the environment given an initial training period.
Next, we classify the subsequent samples (testing period) within
these hotspots, as well as refine the density of old detected hotspots
and track the new evolving hotspots. Hence, we are interested in
both correctly predicting the number of hotspots in the tests we
perform, and in classifying new readings to belong to a certain
hotspot. For both of these tasks, the first step BluBLE takes is to
build a crowd-sourced data collection platform to make the system
generalizable across various environments.

2.1 Crowd-sourcing Data
Tackling the overarching requirement for widespread deployment,
it is imperative for our algorithm to work across varying environ-
ments and different phone models. To accomplish this, we took
to crowd-sourcing our data from different users across the cam-
pus. First we design a simple experiment which requires two BLE
enabled devices, a ‘mobile’ device and a ‘fixed’ device. For the ex-
periment, the users move, with their mobile devices, within and
outside a 6-ft radius from the ‘fixed’ device. The ‘fixed’ device
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transmits BLE beacons, and the mobile device records the received
signal strength parameter (RSSI) of these beacons as the user moves
around. This allows us to investigate the correlation of RSSI and
proximity between the mobile and fixed device.

To enable this experiment, we develop the RSSI data collection
mobile applications for both iOS and android. Further, to enable
a diverse set of devices to act as a fixed beacon, we give the users
beaconing applications for Windows/Linux as well. We build a data-
base with information about the phone’s hardware, phone’s IMU
readings, BLE RSSI values and a corresponding label indicating the
proximity (within or outside 6 feet) for each RSSI reading. Further
information can be found on our website [1].

2.2 Fine-grained Spatial Social Distancing
Next, we tackle the requirement of identifying ‘true’ contacts based
on proximity and duration of contact. We take a series of 5

Figure 1. Proximity classification accu-
racy increases with contextual informa-
tion about the environment

consecutive RSSI mea-
surements to form a fea-
ture vector. The beacon
transmission rate is set to
5Hz, and thus the feature
vector takes RSSI read-
ings collected over 1 sec-
ond, and we get the prox-
imity label from the mo-
bile application which in-
dicates if the user was
within/outside the 6-ft ra-
dius for this 1 second of
data collection. Now, we
train an SVM classifier to classify the proximity labels of these fea-
ture vectors. We then test this classifier across all the environments’
data in the entire dataset, achieving an accuracy of at least 74% in
half the tests we performed. Next, assuming we have contextual
information (i.e. is the space within a grocery shop, office space or
outdoors), we train and test the classifier for this customized case
and achieve an increased median accuracy of 96% ( Fig 1).

2.3 Temporal Social distancing and Hotspots
Finally, turning our attention to temporal social distancing, we
are interested in identifying hotspots in an unsupervised manner,
and classifying RSSI readings belonging to a particular hotspot.
Here, we take a two step approach. During an initial ‘training’
phase, conducted for 30 mins, we allow users to freely use the
environment, and congregate in groups. These users are carrying a
smartphone with the BluBLE app and are collecting RSSI readings
from bluetooth Tiles [4] placed in the environment (Fig 2 (a)). We
take note of the number of groups formed and classify these as
hotspots. Next, during the second ‘testing’ step, we ask a new user
to walk in this environment, and again collect the same RSSI data.
In these two steps, we aim to first detect the number of hotspots in
the environment (Fig 2 (b)) and next classify sections of the user’s
path which belong to a certain hotspot (Fig 2 (c)). Furthermore,
note that keeping the intent of large-scale deployment in mind, our
proposed solution does not require large scale fingerprinting of
spaces, but just passive observation of the space during a training
phase. The duration of this training phase may increase given the
size of the space, but there is no human-in-the-loop.

Figure 2. Classifying hotspots in RSSI domain from deployed beacons. In
the figure we show how the hotspot detection algorithm works in a toy
setting with 2 beacons

Specifically, we collect data for 2 deployment scenarios, with
𝑇 = 4 and 𝑇 = 6 number of tiles in the environment. Next, we
artificially form 4 hotspots in the environment, by asking users
to congregate at 4 known places. Here, one feature vector is a 𝑇
dimensional entity consisting of RSSI readings from all the tiles in
the space. Next, we employ k-means clustering over these feature
vectors to identify the number of clusters in the environment, and
then classify the ‘test’𝑇 dimensional RSSI vectors into one of these
4 identified clusters. The accuracy of predicting the correct cluster
is given in confusion matrix in Fig 3. Specifically, Fig 3 (a) achieves
an agreeable classification accuracy with a deployment density of
1 tile per 144 sq ft, but these accuracies can be easily bumped up to
meet our requirements by increasing the deployment density (i.e.
96 sq ft/tile).

Figure 3. Confusion matrices for Hotspot Classification

3 Conclusion
In this poster we presented BluBLE, a robust and fine-grained con-
tact tracing system, which can provide both spatial and temporal
social distancing. Through this two pronged approach, we are firstly
able to accurately detect ‘true’ contacts between two users. Sec-
ondly, we are able to automatically detect crowded spaces in indoor
environments and classify the users within these detected hotspots.
Looking at this from a policy-making lens, enabling spatial social
distancing, it is easily possible to enforce 6-feet distancing among
people. Furthermore, detecting hotspots will allow for targeted clo-
sures of building facilities to discourage congregations during this
uncertain times of office re-openings. Taking in the larger picture,
an automated system to detect hotspots allows for crowd manage-
ment within buildings, enables better fire safety and more efficient
use of building resources.
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