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WiFi based localization
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Deep Learning based Wireless
Localization for Indoor
Navigation

DLoc and MapFind
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Deep Learning based Wireless Localization

Localization: Novel learning based
approach to solve for the environment
dependent localization.
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Deep Learning based Wireless Localization

Localization: Novel learning based
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Context: Bot that collects both Visual
and WiFi data.

Dataset: Deployed it in 8 different in a
Simple and Complex Environment
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Input Representation: Raw CSI data
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Input Representation: Raw CSI data

Complex Channel Values and AWG noise




Input Representation: Raw CSI data

Complex Channel Values and AWG noise

Can we represent them as images?




Input Representation: AoA-ToF images
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Input Representation: XY images

AoA-ToF (Polar) to XY (cartesian)
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Input Representation: XY images
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Location Decoder Output targets

Image-to-Image translation problem
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Location Loss

Closeness in MISE sense
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Location Loss

Closeness in MISE sense
Liocation = LZ[DlocationE(H) — T]

Penalize multiple peaks

Llocation - LZ[DlocationE(H) — T] + A Ll[DlocationE(H)]




High 90t percentile errors: Asynchronous
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DLoc: Network Architecture
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Insight: Single source
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DLoc: Network Architecture
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Offset Compensation Loss

Defines consistency across images
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Context: MapFind
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Context: MapFind
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Path Planning

Maximize coverage

Minimize traversal length
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Maximize coverage
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DLoc Result — Simple Environment
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DLoc Result — Simple Environment
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DLoc Result —Simple Environment
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Generalization across multiple setups
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Trained | Tested| Median Error 90th Percentile
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Open-Sourced Dataset

* Enabling Baseline comparison for all algorithms
* Pushing Indoor Localization to realization
* Pushing towards a competition similar to ImageNet program

SCAN ME

Labelled WiFi CSI data (WILD-v1)

WILD-v2 Coming Soon
8 different setups « 20 different setups

4 different days 10 different days

« 1 million datapoints

e 8 different environments
2 different environments « 20 different AP locations

108K datapoints
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Conclusion and Future Work

Novel Deep Learning based algorithm with 85% incremental performance

compared to state-of-the-art.

MapFind we have collected over 108k datapoints (and expanding) that is open-

sourced.

Enabling large scale and autonomous indoor navigation

SCAN ME



https://wcsng.ucsd.edu/wild/

