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Deep Learning based Wireless Localization 

Localization: Novel learning based 
approach to solve for the environment 
dependent localization.

Context: Bot that collects both Visual 
and WiFi data.

Dataset: Deployed it in 8 different in a 
Simple and Complex Environment

Results: Shown a 85% improvement 
compared to state of the art at 90th

percentile.

7

Table

Tables
Desk



Challenge: Multipath, Non-Line of Sight

8



Challenge: Multipath, Non-Line of Sight

8

r

A

P

Smartphon

e

θ



Challenge: Multipath, Non-Line of Sight

8

r

A

P

Smartphon

e

Reflecto

r

θ



Challenge: Multipath, Non-Line of Sight

8

A

P

Smartphon

e

Reflecto

r

Obstacl

e



Challenge: Multipath, Non-Line of Sight

8

A

P

Smartphon

e

Reflecto

r

Obstacl

e

Need Knowledge of Environment



Requirements to design the neural network

9



Requirements to design the neural network

9

Input 
Representation



Requirements to design the neural network

9

Input 
Representation

Output/Target 
Representation



Requirements to design the neural network

9

Input 
Representation

Network
Output/Target 
Representation



Requirements to design the neural network

9

Input 
Representation

Network
Output/Target 
Representation

Objective/Loss
Function



Requirements to design the neural network

9

Input 
Representation

Network
Output/Target 
Representation

Objective/Loss
FunctionGradient



Input Representation: Raw CSI data

10



Input Representation: Raw CSI data

10

Maximillian Arnold et. 
al., SCC 2019 

Michal Nowicki et. al., 
ICA, 2017

Xuyu Wang, et al., IEEE 
Access 5, 2017

Xialong Zheng, et al., 
IEEE/ACM Transactions 
on Networking, 2017



Input Representation: Raw CSI data

10

Maximillian Arnold et. 
al., SCC 2019 

Michal Nowicki et. al., 
ICA, 2017

Xuyu Wang, et al., IEEE 
Access 5, 2017

Xialong Zheng, et al., 
IEEE/ACM Transactions 
on Networking, 2017

Complex Channel Values and AWG noise 



Input Representation: Raw CSI data

10

Can we represent them as images?
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Image-to-Image translation problem
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Setup-1 Setup-2

Setup-3 Setup-4

Trained 
on 

Setup

Tested 
on 
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Median Error 
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90th Percentile 
Error (cm)
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1,3,4 2 71 198 171 420

1,2,4 3 82 154 252 380
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Labelled WiFi CSI data (WILD-v1)

8 different setups

4 different days

108K datapoints

2 different environments

30

https://wcsng.ucsd.edu/wild/

WILD-v2 Coming Soon

• 20 different setups

• 10 different days

• 1 million datapoints

• 8 different environments

• 20 different AP locations

• Enabling Baseline comparison for all algorithms
• Pushing Indoor Localization to realization
• Pushing towards a competition similar to ImageNet program

https://wcsng.ucsd.edu/wild/


Conclusion and Future Work

• Novel Deep Learning based algorithm with 85% incremental performance 

compared to state-of-the-art.

• MapFind we have collected over 108k datapoints (and expanding) that is open-

sourced. 

• Enabling large scale and autonomous indoor navigation
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