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Abstract—Waveform Characterization is crucial for various
spectrum sensing applications such as anomaly detection and
measuring spectrum utilization. It consists of detecting the
waveform type (single carrier or spread spectrum), modulation
form (QAM, PSK, FSK, GMSK, GFSK etc)̇ and correspond-
ing parameters such as symbol rate and chip rate. In this
paper, we propose a blind characterization algorithm suited
for these applications using second-order cyclostationary and
fourier domain features of signals. To test the proposed method’s
robustness, a comprehensive evaluation is conducted using both
simulated and over-the-air (OTA) experiments with appropriate
signal detection pre-processing steps. An overall modulation
classification accuracy of 86.25% is attained for OTA testing
with a modulation set consisting of QAM, PSK, FSK, GFSK,
MSK, GMSK, DSSS and OOK.

Index Terms—waveform characterization, cyclostationarity,
anomaly detection, spectrum utilization

I. INTRODUCTION

The Radio Frequency (RF) spectrum is a sparse and
complex environment that poses a challenge for blind
spectrum sensing applications such as anomaly detection and
spectrum utilization measurement. With the proliferation of
IoT devices, there arises a need to monitor the spectrum
to identify unintended transmissions and potential security
threats such as data ex-filtration or eavesdropping. In order
to identify these activities, it is necessary to properly
characterize a detected waveform. An effective approach
to do this is to determine the waveform’s modulation and
protocol category. Moreover, it can also be valuable to
determine the associated signal parameters, such as the data
rate and modulation-specific parameters. Depending on the
modulation technique used, these may include frequency
deviation (frequency shift keying type), chip rate (spread
spectrum type), symbol rate, and others. By estimating these,
one can gain a more comprehensive understanding of the
anomalous waveform. For example, an unexpected deviation
in a standard protocol signal’s symbol or chip rate may point
towards an anomalous transmission that should be further
investigated. Similarly, measuring spectrum utilization would
require an understanding of the type of waveform (single
carrier or spread spectrum), modulation and modulation order
along with its data rate.

Blind Waveform Characterization is a challenging problem
mainly due to the ambiguity involved in multiple factors,

Fig. 1: The RF Spectrum is a complex environment that
consists of multiple signals overlapping in time-frequency.

which range from the signal’s characteristics to the radio
parameters. In this work, the problem studied is one step ahead
of the modulation classification problem as it also makes an
attempt to extract signal parameters and identify protocols.

The following points describe some fundamental require-
ments of a robust waveform characterization system to operate
for multiple spectrum sensing applications:

1) Function without apriori knowledge of the precise time-
frequency bounds of signals: To effectively characterize sig-
nals from the spectrum, we must first detect and isolate them
in time and frequency. This is because the receiver would
collect a portion of the spectrum for a finite time period,
encompassing of multiple transmissions as shown in Fig. 1.

Hence, for spectrum sensing scenarios when precise time-
frequency boundaries of the signals are unknown, signal detec-
tion and isolation serve as a crucial pre-processing step. This is
also established in [1], where the authors apply a channelizer
followed by energy detection and higher-order statistics detec-
tion before passing the data through a modulation classifier.
For this work also, we apply a recently proposed detection
system, Searchlight [2], which is a robust energy detector
specifically designed for blind spectrum sensing scenarios.
Fig. 2 shows the high-level diagram of a spectrum sensing
system containing the proposed waveform characterization
block, which is preceded by a detector in order to provide
it with the signal’s time domain samples.



Fig. 2: A typical spectrum sensing system deployed with
our proposed Waveform Characterization to provide detailed
insights on the spectrum.

2) Use features that generalize over common signal char-
acteristics: Signals have varying ranges of bandwidth, signal-
to-noise ratio (SNR), symbol rates, pulse shaping filter char-
acteristics, and other modulation-specific parameters such as
frequency deviation (for frequency-shift keying type modula-
tions) and chip rate (for direct sequence spread spectrum type
modulations). This parameter diversity can majorly influence
different features of signals such as power spectral density, and
hence, they should be considered while designing a feature
for a classifier. For this work, the datasets used to evaluate the
algorithm are representative and comprehensive of the signal’s
characteristics.

3) Robust to RF Effects: Apart from signal-controlled pa-
rameters, the signals are affected by RF effects, such as the
wireless channel, hardware effects like IQ imbalance, carrier
frequency offset, and local oscillator leakage which could
result in large deviations in the extracted features. For example,
if a classifier is only trained using power spectral density
(PSD) signatures of signals, then in the presence of a deep
channel fade, the shape of the PSD would appear different
and may lead to misclassification.

4) Awareness of interference in the spectrum: In practice,
one may not always receive clean captures of signals from the
spectrum, due to the presence of interfering signals. Hence,
the classifier should be capable of distinguishing these cases
from those when it receives a capture containing only one
modulation. In this case, it can flag it off as either an unknown
signal, or detect the presence of both modulated signals.

With these points into consideration, this paper proposes a
methodology for waveform characterization that distinguishes
commonly employed modulation categories using cyclosta-
tionarity and frequency domain features extracted from the
time domain samples of the signal. It also extracts signal
parameters such as symbol rate, chip rate and carrier frequency
along with classifying some standard protocols and lays out a
blueprint for adding other signals of interest for classification.

II. CYCLOSTATIONARITY-BASED WAVEFORM
CHARACTERIZATION

A. A primer on cyclostationarity

Cyclostationary processes are a special subset of random
processes where the statistical properties of the signals, such
as the autocorrelation function vary periodically with respect
to time as proposed by Gardner [3]. A commonly employed

measure of cyclostationarity is the Spectral Correlation Den-
sity (SCD). Mathematically, the SCD is defined as the Fourier
transform of the cyclic autocorrelation function, and thus
measures the cyclic spectral redundancy. This is defined as:
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where XT,u is the finite Fourier transform of the signal x(t)
evaluated at the frequency u [4]. The SCD can be visualized
as a two-dimensional function of spectral frequencies and
cycle frequencies (f, α) wherein the regions of high magnitude
correspond to high spectral correlation. Since wireless signals
are complex in nature, it can be useful to analyze different
configurations of XT,u. The non-conjugate SCD is thus as
defined in Equation (1), while the conjugate SCD is formed
by the lag product of XT,u with no conjugation in the second
term. Both these quantities may reveal different information
about the cyclostationarity of a signal.

B. Related work

In literature, modulation classification is studied using
feature-based methods such as the Fourier transform [5] and
Wavelet transform [6], [7]. Another category of methods
include likelihood-based techniques [8], [9], which are not
practical for blind classification as they require estimation of
various parameter distributions apriori. More recently, machine
learning algorithms such as convolutional neural networks
[10] are also deployed to train neural networks using I/Q
samples and derived features. Since wireless signals exhibit
cyclostationarity due to various factors that induce periodicity
in them, such as symbol rate, chip rate etc. these signatures
have emerged as a popular choice for blind detection [11] as
well as modulation classification tasks [1], [12]. As shown in
[13], cyclostationary features form a good choice to provide
robustness against these RF non-linearities. However, there is
a need to view the waveform characterization problem in a
unified manner, from the point of view of a practical spectrum
sensing system - analyzing effects of varying sample rates,
SNRs, detection errors, and intricacies of blind cyclic features
which this work aims to cover.

C. Goals of the proposed work

To address these requirements, this paper proposes a tech-
nique for blind waveform characterization designed to specif-
ically tackle the complexities of a practical spectrum sensing
system with the following key aspects:

1) Representative dataset generation using synthetic and
over the air datasets consisting of different modulations
and protocol-based signals that are pre-processed with a
detection system

2) Decision-tree based classifier that takes insight from
multiple signal processing features analyzed to develop a
flow-chart based approach to return modulation, protocol
and signal parameters



3) Extensive evaluation under different scenarios by com-
paring the classification accuracy with metrics such as
SNR and Energy to Noise Ratio (ENR)

III. ALGORITHM DESIGN

Waveform Characterization is an integral step to provide
context to the detected transmissions in the RF spectrum. It
operates on the I/Q samples of the detected signal in order
to identify the modality, modulation, protocol (if present),
and estimate signal parameters. Cyclostationary and frequency
domain features are extracted and passed through a decision-
tree-based classifier to predict these quantities. A high-level
overview of this process is shown in Fig. 3 and described
step-by-step in the next section.

Fig. 3: A combination of cyclostationary and frequency do-
main features are used for classification.

A. Exploiting cyclostationary features

Cyclostationary patterns provide a unique way to represent
various modulated signals in the spectrum. This is because
wireless signals exhibit periodicities due to different factors
such as chip sequence, symbol rate etc. leading to cyclosta-
tionary properties. To develop logic around processing the cy-
clostationary features, it is necessary to extract the prominent
cycle frequencies of the signal, and most importantly map the
patterns to the broad modulation family.

Signal detection systems such as [2] are prone to errors
in isolating the signal in time/frequency. As proven in [14],
even in these cases, the cyclostationary signatures can be
retained by processing narrow subbands of the signal. This
makes cyclostationary features a very robust choice for blind
detection and classification applications.

1) Using the Strip Spectral Correlation Analyzer: In order
to extract the cyclostationary features, the Strip Spectral Cor-
relation Analyzer (SSCA) is used. This provides a blind esti-
mation of the SCD, since conventional techniques such as the
frequency smoothing method and time smoothing method are
extremely sensitive to the cycle frequency resolution making
them impractical to use for blind characterization scenarios.
The SSCA point estimates are computed as follows [15]:

Sfk+q∆α
xy (n,

fk
2
−q

∆α

2
)∆t =

∑
r

XT (r, fk)y
∗(r)g(n−r)e−j2πq r

N

(2)
where XT is the complex demodulate of the signal, α =

fk+q∆α and f = 0.5∗(fk−q∆α). y(r) is the unfiltered ver-
sion of the signal, and this product is multiplied by a suitable
window g(n). The two governing parameters of the algorithm

are the resolution in spectral and cycle frequency, (N,Np).
The two-dimensional output of the SSCA is transformed into
a one-dimension cyclic feature function (CFF) following the
steps described in [15]. The dominant cycle frequencies (CFs)
appear as sharp peaks in the CFF if (N,Np) are properly
set, making it relatively simpler to extract them using signal
processing techniques.

2) Cyclic analysis of modulated signals: Using the SSCA,
we extensively analyzed the cyclostationary features of some
common modulation families considering all the effects dis-
cussed for a practical modulation classifier. These are also
theoretically established in [3], [16]. Fig. 4 shows the non-
conjugate and conjugate cyclostationary features using SSCA
of a Bluetooth packet collected from the 2.45 GHz band. The
peaks in the non-conjugate and conjugate CFF appear at the
symbol rate, which in this case is 1 MHz.

Fig. 4: PSD and Cyclostationary signatures of a captured BLE
packet

Table I shows the signal categories divided into various
groups based on their second-order cyclostationary features. It
can be seen that second-order features are not sufficient to dis-
tinguish some modulations such as QAM/PSK, MSK/GMSK
etc.

B. Using Frequency Domain features as a support

Frequency domain features such as the power spectral den-
sity (PSD) estimate of a signal can also serve as a distinguish-
ing factor for many common modulations. Additionally, they
are efficient to compute by leveraging the low computational
complexity of the Fourier transform. In this work, we leverage
the fact that each tone in a signal’s PSD gives rise to a
conjugate cycle frequency at twice the tone frequency. Hence,



TABLE I: Signal families divided based on common cyclosta-
tionary signatures

Signal family Non-conjugate
CFs

Conjugate CFs

BPSK, OOK fsym 2fc, 2fc ± fsym

QAM, PSK fsym -
FSK, GFSK fsym, 2ftones 2fc, 2fc±2ftones, 2fc±fsym

MSK, GMSK fsym 2fc ± 0.5fsym

DSSS BPSK fsym, fchip 2fc, 2fc ± fsym

DSSS QAM,
PSK

fsym, fchip -

if a tone is detected at frequency f0, there should be a
corresponding conjugate cycle frequency detected at f0

2 .
By adding this linkage between the cycle and tone fre-

quencies, we try to avoid any false positives that could be
encountered due to incorrect thresholding. A tone is said to
be detected if αconjugate− 2ftone < δ, where δ is a tolerance
factor to factor in the change in resolution between the two
frequencies.

C. Extraction of cyclostationary and frequency domain fea-
tures - Median filtering

To extract the frequencies from the CFF as well as PSD, an
adaptive thresholding mechanism is required that is robust to
the noise variance. We borrow an idea from image processing
applications, where median filters are known to denoise an
image while preserving the sharp edges [17]. Similarly, a
median filter could preserve the dominant peaks in the CFF
and PSD for this use case. If f(x) is the feature function and
f̃(x) is the median filtered version of it, a frequency crosses
the threshold if f(x) > βf̃(x), where β is the scale factor
set to raise f̃(x) to form a threshold. This is heuristically set
based on experimental data. The median filter can adapt itself
to the shape of the CFF while preserving the peaks. In cases
when the features are absent, no cycle frequencies should be
detected.

D. Forming a decision tree

With the look-up tables for the cyclostationary as well as
frequency domain features, a set of rules can be laid out for
each modulation category. These rules can then be converted
into some logic using the extracted features which can be
organized as a decision tree. A summary of these rules is
given in Table II.

It is to be noted that using this set of features, it is
not possible to further resolve some modulations, such as
QAM/PSK and MSK/GMSK due to similar features. However,
if one extends to using higher-order cyclostationary features
using a similar approach, these modulations can be separately
resolved too.

Fig. 5 shows the entire flow diagram of the classifier created
using the rules in Table II where each endpoint represents a
decision. Each stage is like a binary classification problem
which outputs whether that particular modulation category is
detected or not. If it is not detected, the features are passed to

TABLE II: Feature look-up table for different modulations

Modulation Rule
BPSK - Conjugate CFs at 2fc, 2fc ± fsym

- No tone in the PSD
OOK - Conjugate CFs at 2fc, 2fc ± fsym

- Tone present in PSD at fc
DSSS - Non-conjugate CFs at harmonics of fsym

- Non-conjugate CFs do not have strictly decreasing
heights

FSK - Tones present in PSD separated by fdev
- Most dominant peaks in conjugate PSD should corre-
spond to 2ftone

- If so, modulation order of FSK = number of detected
tone frequencies

MSK/GMSK - No tone in PSD
- Conjugate CFs separated by fsym
- No conjugate CFs at 2fc

QAM/PSK - No conjugate CFs

the next stage, and so on. If no modulation category matches,
the signal is classified as an unknown category. Also, in some
cases the classification is two-stage, for example, once a signal
is classified as DSSS, it goes through another set of classifiers
to check if it belongs to a protocol-based DSSS (WiFi, Zigbee)
or it is vanilla DSSS (no protocol, can be possibly an LPI
signal). Once a modulation is detected, all relevant parameters
based on Table I are extracted for that category.

E. Sub-classifiers

1) DSSS Classifier: DSSS (QAM and PSK) exhibit non-
conjugate cyclostationarity at harmonics of symbol rate and
chip rate due to the spreading sequence. This leads to a unique
cyclic signature unlike other single carrier modulations making
it easy to filter out first. Given that the chip rate of DSSS
is an integral multiple of the symbol rate, the first harmonic
non-conjugate CF corresponds to the symbol rate, the non-
conjugate CFs typically occur as fsym, 2fsym, 3fsym and so
on. Since one of these harmonics would be the cycle frequency
corresponding to the chip rate, the magnitude of spectral
correlation would be greater (leading to uneven prominence).
Single carrier signals may also have CFs at harmonics of
fsym, depending on pulse shaping, but with steadily decreas-
ing/constant prominences. Hence, after detecting harmonic
CFs, it is important to also check the prominences of the
detected CFs. For a modulation to be classified as DSSS, the
prominence should not steadily increase or decrease, i.e. it
should exhibit a variable nature as shown in Fig. 6.

2) Real modulations classifier: Real modulations refer to
those that only contain an in-phase component, and this leads
to similar conjugate and non-conjugate CFs:

αnonconj = ±fsym αconj = 2fc, 2fc ± fsym (3)

If the detected conjugate CFs are [α1, α2, α3] then,

||α2 − α1| − αsym| < δ , ||α3 − α2| − αsym| < δ (4)

where δ is a small tolerance factor. If this test is successful,
the tone frequency check is employed to distinguish between
OOK and BPSK.



Fig. 5: Hierarchical decision tree-based classifier

Fig. 6: Non-conjugate CFF and the corresponding peak
prominences of the thresholded CFs

3) FSK classifier: With the assumption that the FSK signals
are discontinuous-phase type, the presence of tones and their
corresponding conjugate CFs is used as a test for FSK modu-
lations. Additionally, the symbol rate and frequency deviation
can also be extracted.

4) MSK/GMSK classifier: MSK/GMSK do not possess a
cycle frequency corresponding to the carrier frequency due
to their continuous phase nature. The two most prominent

conjugate CFs differ by the symbol rate, i.e.:

||α2 − α1| − αsym| < γ (5)

where γ is a tolerance factor and[α1, α2] are the two conjugate
CFs. It is to be noted that this condition could be even true
for BPSK/OOK but since they would already be detected at
an earlier stage, there would not be an ambiguity. Therefore,
the placement of each sub-classifier in the main decision tree
is crucial.

5) QAM/PSK classifier: QAM/PSK are the only class in
the above modulations that do not possess any conjugate cyclic
features or tones. Hence, at the end of the entire decision tree
if there is a signal such that two symmetric non-conjugate
CFs are detected but no conjugate CF is present, then this is
classified as QAM/PSK. If a signal does not meet this criterion,
then it is classified as ”unknown”.

IV. EVALUATION

A. Dataset Generation

Due to the varied parameterizations possible for anomalous
signals, a broad spectrum of parameter sweeps were incor-
porated into the datasets. Tables III, IV, V, VI show the
parameter sweeps in the datasets for various categories. The
Es

No
for spread spectrum signals is set as low as -10 dB as these

are common below-noise floor signals due to their spreading
properties for recovery. Also, different chip sequence lengths
are included in the dataset as this parameter also plays a
significant role in changing the power spectral density of the
signal.

A large dataset containing data points with each of these
parameter combinations was used for analysis and testing.
Two kinds of datasets with the same parameterizations were



TABLE III: Dataset parameter ranges for single carrier signals

Parameter Range
Es/No -5 to 25 dB
Symbol Rate 250 KHz to 10 MHz
RRC roll-off factor 0.25 to 0.4
RRC filter spans 4 to 10
Signal durations 2 to 8 ms
Samples Per Symbol 2 to 8

TABLE IV: Dataset parameter ranges for spread spectrum
signals

Parameter Range
Es/No -10 to 25 dB
Symbol Rate 250 KHz to 5 MHz
RRC roll-off factor 0.25 to 0.4
RRC filter spans 4 to 10
Signal durations 2 to 5 ms
Chips per Symbol 3, 7, 11, 15, 31, 63, 127
Samples Per Chip 2 to 10

generated - one with simulated AWGN noise and wireless
channel models such as heuristic (multipath) and rician, and
the other was passed over the air using USRP N320s as shown
in Fig. 7. In the synthetic dataset, all signals were resampled
to 100 Msps, while in the OTA datasets, the signals were
resampled based on the radio’s settings.

Fig. 7: Hardware setup that consisted of USRP N320s

TABLE V: Modulation order sweeps in the dataset

Modulation Orders
FSK 2, 4, 8
PSK 2, 4, 8, 16, 32
QAM 16, 64, 256
DSSS PSK 2, 4, 8, 16, 32
DSSS QAM 16, 64, 256

Apart from the vanilla modulations, the protocol signals
(BLE, WiFi, Zigbee, GSM) consist of a mix of synthetically
generated signals, and real-world captures from their respec-
tive frequency bands using SDRs.

B. Data pre-processing

The signals are resampled from their original sample rate
and are confined only within a certain time-frequency range
in the collected data. The goal of a detector would be to
hence identify these bounds, and extract the I/Q samples
corresponding to this. However, the detector may introduce
some error into the system, in terms of time and/or frequency
bounds and hence the effect of this should be incorporated
into the testing of the classifier. Two types of detectors are
used- one is a perfect energy detector that knows in prior the
location of the signal to help establish a baseline, and the
other is Searchlight [2], as described in an earlier section.

TABLE VI: Modulation-specific parameter sweeps in the
dataset

Modulation Parameter Value
FSK Frequency deviation 0.05 to 0.6
GFSK, GMSK Bandwidth-time product 0.2 to 1
DSSS Samples per chip 2 to 10

DSSS Spreading codes Random PN Sequence
Barker codes

Fig. 8 shows this entire pre-processing flow. Finally, after
each pre-processed data point is obtained, it is passed through
the feature extraction block where the relevant features are
extracted.

C. Evaluation metrics

We use Es
No

and the Energy to Noise ratio (ENR) as the
key metrics for evaluating the classification accuracies. While
both Es

No
and SNR measure signal power relative to noise

power these two metrics are only equal for a signal that is
not oversampled. Es

No
is actually the in-band SNR of a signal

and hence for resampled signals, the following relation exists
[18]:

SNR =
Es

No

B/W

fs
(6)

If a low SNR signal is collected for a sufficiently long
time, its energy would be more than the same SNR signal
collected for a shorter duration. Hence, Energy to Noise Ratio
[18], which measures the energy of the signal is a more
appropriate technique as compared to SNR for evaluation. To
the best of our knowledge, this is the first work that studies the
modulation classification performance with respect to ENR.
Mathematically ENR (in dB) is defined as:

ENR = SNR+ 10 log10(bt) (7)

Here, bt is the time-bandwidth product of the energy box and
is a dimensionless quantity. For example, if a signal spans 5
ms and is 1 MHz wide, this product would be 500. Hence, the
classification accuracy is compared against ENR and Es

No
.

V. RESULTS

The results of the classifier are evaluated under multiple
combinations of dataset and pre-processing techniques to allow
extensive testing.

A. Vanilla modulations

Figs. 9, 10 and 11 show the per-category accuracies for
different datasets. As expected, a perfect energy detector
leads to a better overall classification accuracy of 92.5% and
74.125% for OTA and synthetic datasets respectively. The
synthetic dataset contains a much lower range of SNR for
the signals since it can be controlled while for OTA data,
this is difficult to control and hence causing the difference
in accuracies. Using searchlight with OTA data, we obtain a
classification accuracy of 86.25%, which is slightly lesser than
a perfect energy detector with the same dataset.



Fig. 8: The feature analysis procedure consists of signal generation and transmission, followed by detection.

Fig. 9: Confusion Matrix of the OTA dataset passed through
the practical energy detector (Searchight [2])

Fig. 10: Confusion Matrix of the OTA dataset passed through
a perfect energy detector

Fig. 11: Confusion Matrix of the synthetic dataset passed
through a perfect energy detector

There is a significant decrease in the accuracy of DSSS
from 93% to 77% from the perfect to practical energy detector
case. This can be attributed to the fact that DSSS has many
discontinuities in energy and hence is especially more prone
to errors in isolating its time-frequency bounds. If a narrow
subband of DSSS is detected as a separate signal, then
this would resemble its single carrier counterpart, and hence
13% of the DSSS QAM/PSK was classified as single carrier
QAM/PSK. In this manner, testing the algorithm with different
flavors of data aids in forming a better understanding of the
specific issues. Fig. 12 shows the per-category classification
accuracy as a function of the ENR. The general trend observed
is an increase in accuracy with an increase in ENR, however
we can observe that some modulations such as MSK/GMSK
require a higher ENR to achieve 80% accuracy. This is because
they are continuous-phase modulations, which lead to weaker
non-conjugate cyclic features. Hence in low ENR scenarios, it
is challenging to extract their cycle frequencies, causing low
accuracy.

As shown in Fig. 13, the average ENR across the dataset to
achieve 80% accuracy is approximately 53 dB, but in terms of
SNR it is only 7 dB. This is a reasonable limit for conventional
communication signals. It is to be noted that even at low SNRs



Fig. 12: Accuracy vs ENR of classifier results with simulated data

0 dB, the classification accuracy is still above 50%. Also, the
application of different wireless channel models as compared
to an identity channel causes a dip in accuracy.

B. Protocol-based signals

As shown in the decision tree in Fig. 5, some modulations
are also classified up to a protocol level. We take up an ex-
ample for the MSK/GMSK family of modulations, consisting
of vanilla MSK/GMSK, BLE and GSM signals. Once the
symbol rate is estimated, a look-up table is used to compare the
extracted and expected symbol rates. Additionally, knowledge
of center frequency would also help, but is not used in this test.
Table VII shows the required non-conjugate cycle frequency
for the protocols. A similar look-up table can be created for
any protocol signal, once its dominant cycle frequencies are
characterized depending on the system use case.

TABLE VII: Cycle frequencies look-up table for the
MSK/GMSK classification

Waveform Non-conjugate cycle frequency
BLE 1 MHz or 2 MHz
GSM DL 67.7 KHz
Vanilla MSK/GMSK Any

This was tested using simulated BLE and GSM DL packets,
and an accuracy of 87% was achieved for BLE, while an
accuracy of 91% was achieved for GSM DL. While this was
done only with GSM DL packets, it can also be extended to
other variants of GSM by analyzing their cycle frequencies
and adding them to the LUT. Additionally, the symbol rate of
BLE was also estimated (1 MHz or 2 MHz) using the extracted
non-conjugate cycle frequencies. Similar to this, based on a

particular spectrum sensing application, or frequency band of
interest, the different protocol waveforms can be characterized
in terms of their dominant cycle frequencies. Additionally, the
decision tree structure allows for easy addition of classifiers for
other modulations that are not currently included by following
the established blueprint for building the classifier submodules.

C. Symbol-rate estimation

Cyclostationary features offer the added benefit of estima-
tion of various signal parameters such as symbol rate, chip
rate etc. Based on the median-filter based feature extraction
framework developed, once a modulation is classified, we can
map the particular cycle frequency to a known parameter. For
example, it is known that the most prominent non-conjugate
CF for QAM/PSK type modulations corresponds to the symbol
rate. Fig. 14 shows the accuracy in the symbol rate estimation
for QAM/PSK, which has a higher variance at lower symbol
rates, but is more consistent at higher rates. This is because
a lower symbol rate leads to a lower ENR, and hence weaker
cyclic features.

VI. CONCLUSION

This work proposes a blind waveform characterization sys-
tem capable of classifying various modulation categories and
protocol-based signals with an accuracy of 86.25% on over-
the-air data. The SSCA algorithm is implemented and used
for the blind estimation of cyclic features. It also provides
estimates of the parameters of a signal corresponding to the
dominant cycle frequencies. The decision tree-based classifier
structure, based on a combination of cyclostationary and
fourier features brings the benefit that it can be extended to add



(a) (b) (c)

Fig. 13: Overall classification accuracy with respect to (a) ENR (b) SNR and (c) Wireless Channel

Fig. 14: Estimation of symbol rate for QAM/PSK using cycle
frequencies

other modulations and protocols depending on the signal-of-
interest for the given application. Additionally, new features
can be incorporated for a finer classification level, such as
higher-order-cyclic features.
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