
GreenMO Math Explanation

1 GreenMO equivalence to switched-Hybrid Beamformer

An equivalent system to GreenMO, however implemented with virtual RF chains is that of a fully
connected, switched hybrid beamformer (Fig. 1 a). By that, we mean, an independently controlled
srm ∈ {0, 1} switch connected to each m-th antenna, each r-th RF chain. We will first show how we
model this equivalent system so that the notation is clear with this known example, and then show
how we adapt this for GreenMO albeit with single wider-bandwidth RF chain.

· · · ·

1

2

8

ADC

4x4
MIMO

Processing
block

Digital
De-

spread
er

fc

Analog
Domain

User-proportionate
bandwidth
digital domain

fc

fc

fc

B

B

RF Switch Virtual RF
Chain (VRF)

VRF #1

VRF #2

VRF #3

VRF #4

(s11 ,s21,s31,s41)

RF Switch

RF Switch

Superposed, digitized
coded components

4B
4B

LNA Mixer

Single 4B Bandwidth
Physical RF Chain

4 interfering streams
(B Bandwidth)

····

1

2

8

On/Off mapper
8 ant -> 4 RF chains

s11

s21s31s41

s12

s22 s32 s42

s18

s28 s38 s48

4 RF
chains

(s12 ,s22,s32,s42)

(s18 ,s28,s38,s48)

(a) Equivalent
switched-hybrid array (b) GreenMO with RF switches and 4 times bandwidth

Figure 1: (a) Shows an equivalent Hybrid Beamformer with physical RF chains, srm denoted if antenna
m is on for r-th RF chain (b) Shows GreenMO architecture which implements similar system albeit
with one RF chain by using wider bandwidth

We have i ∈ {0, 1, . . .M−1} M antennas, j ∈ {0, 1, . . . R−1} RF Chains, to connect k ∈ 0, 1, . . .K − 1
K users, each having a single antenna each. Hence in the combined network, the user’s see a M ∗K
wireless channel, with channel between k-th user, m-th antenna given by H(t) = [hmk(t)]. Each user’s
signal is represented by xk(t). The analog signal received at m-th antenna, ym(t) can be written as (∗
represents convolution):

ym(t) =

K∑
k=1

(xk(t) ∗ hmk(t)) (1)

and hence, the analog signal at r-th RF chain can be written as summation of all antenna signals ym
multiplied by on-off variable srm:

yr(t) =

M∑
m=1

ym(t)srm =

M∑
m=1

srm

K∑
k=1

(xk(t) ∗ hmk(t)) =

M∑
m=1

K∑
k=1

xk(t) ∗ (srmhmk(t)) (2)

The last step holds since srm doesn’t depend on k. After digitization at t = NTs, we change (t) → [n],
and we get

1

yr(nTs)
.
= yr[n] =

M∑
m=1

K∑
k=1

xk[n] ∗ (srmhmk[n]) (3)

In frequency domain, we would get, assuming

Yr[f] =

M∑
m=1

K∑
k=1

Xk[f](SrmHmk[f]) =

M∑
m=1

K∑
k=1

(SrmHmk[f])Xk[f] (4)

Which in matrix form, by collecting all Yr across R RF chains, becomes:

Y[f] = SH[f]X[f] (5)

where S = [srm] represents a R×M binary matrix, that maps the M ×K wireless channel matrix to
an equivalent R ×K matrix, that gets digitized per-user by the R RF chains. To get back the user’s
transmitted symbols, X[f] from these R RF chains, the processing can pseudo-invert SH, i.e. one can
get an estimate of X[f], denoted as X̂[f],

X̂[f] = (SH[f])
†
Y [f] (6)

2 How does GreenMO implement this with a single RF chain?

Now that we presented how the GreenMO equivalent system looks like with R physically different RF
chains, we will go over how GreenMO creates the same system model but with R virtual RF chains
spawned out from a single R× bandwidth RF chain.

First, observe that till now srm, that denotes switch value for r-th RF chain and m-th antenna did not
have a time-dependence in the previous analysis. This is typical with Hybrid beamforming literature,
since the analog beamforming weights (0/1 here in case of srm, or phase weights ϕrm in case of phased
array) are typically treated as static. GreenMO uses a single physical RF chain 1, and hence, we get
with some time-variability switching represented by s1m(t):

y1(t) =

M∑
m=1

K∑
k=1

xk(t) ∗ (s1m(t)hmk(t)) (7)

We sample this single RF chain with nTs

R , since we have R× bandwidth at disposal with the single RF
chain:

y1[n] = y1(n
Ts

R
) =

M∑
m=1

K∑
k=1

xk(n
Ts

R
) ∗ (s1m(n

Ts

R
)hmk(n

Ts

R
)) (8)

Now, let’s define yr[i] = y1[Ri+r], i.e. y0[n] is a collection of y1[0], y1[R], y1[2R], . . ., y1[n] is a collection
of y1[1], y1[R+ 1], y1[2R+ 1], . . . and so on. Thus, we have,

yr[i] := y1((Ri+ r)
Ts

R
) =

M∑
m=1

K∑
k=1

xk(iTs +
rTs

R
) ∗ (s1m(iTs +

rTs

R
)hmk(iTs +

rTs

R
)) (9)

2

Here, we make one assumption, that the channel hmk(iTs +
rTs

R) does not depend on r, but changes

only with i (with Ts rate, and not Ts

R rate). Hence, hmk(iTs) ≈ hmk(iTs +
Ts

R) ≈ hmk(iTs +
2Ts

R) . . . ≈
hmk(iTs +

(R−1)Ts

R). Thus, we can re-write, hmk(iTs +
rTs

R) = hmk(iTs) = hmk[i].

Further, we design codes such that the codes repeat every Ts time slots, that is s1m(iTs + rTs

R) =

s1m((i−1)Ts+
rTs

R) = s1m((i+1)Ts+
rTs

R), ∀i, since the code design is in our hands and we can force this

with RF switches. Hence, we can re-write s1m(iTs+
rTs

R) = s1m(rTs

R) := srm where the last step is just
to simplify the description, since it only depends on r. As an example, when R = 4, one possible code
design could be s1m = 1, 0, 0, 0, 1, 0, 0, 0 . . ., s2m = 0, 1, 0, 0, 0, 1, 0, 0 . . ., s3m = 0, 0, 1, 0, 0, 0, 1, 0 . . .,
s4m = 0, 0, 0, 1, 0, 0, 0, 1 Basically, for each srm code, it should repeat every R samples, since the
sampling rate is R×. This code design can also be looked alternately as a frequency domain spreader
(since this on-off nature creates harmonics), and the discussion is detailed in our main paper. Hence,
we can rewrite the above equation more simply as:

yr[i] =

M∑
m=1

K∑
k=1

xk(iTs +
rTs

R
) ∗ (srmhmk[i]) (10)

This equation has already started to take shape of a traditional hybrid beamformer, and this becomes
more apparent as we take the frequency transform:

Yr[f] =

M∑
m=1

K∑
k=1

F(xk(iTs +
rTs

R
))(SrmHmk[f]) (11)

Now, F(xk(iTs+
rTs

R)) is just rTs

R delayed form of xk(iTs), hence, F(xk(iTs+
rTs

R)) = e−j2πf rTs
R F(xk(iTs)) =

e−j2πf rTs
R X[f]. Hence, the extra delay just acts as a phase-varying exponential, and thus, we get

Yr[f] =

M∑
m=1

K∑
k=1

Xk[f]e
−j2πf rTs

R SrmHmk[f] (12)

We can absorb the e−j2πf rTs
R Srm = S̃rm[f], to further simplify:

Yr[f] =

M∑
m=1

K∑
k=1

Xk[f]S̃rm[f]Hmk[f] (13)

Which in matrix form, by collecting all Yr across R ‘virtual’ RF chains (Remember, to get yr from y1

we spliced across the time samples, we did not have R physical RF chains), becomes:

Y[f] = S̃[f]H[f]X[f] (14)

Hence, now to get back X[f], we can pseudo invert S̃[f]H[f] per subcarrier.

The pseudo-inversion performance does depend on choice of the matrix S̃[f]. Empirically, we have
found choice of S̃[f] that does binarized analog beamforming per-user and makes the equivalent channel
S̃[f]H[f] diagonal heavy gives the best estimate. More details on this can be found in our main paper.

3

3 Hardware implications

The text here explains the theory behind how GreenMO creates the virtual RF chains, by using wider
bandwidth RF chains and periodically repeating codes. The key implications on hardware are:

• To implement this in hardware, the switches need to toggle with 0-1 codes that repeat every
T = 1/B to support bandwidth B, hence have a fundamental frequency of B. Further the duty
cycle needs to be 1/R to support total R virtual chains. Hence, the rise/fall time of switched
need to be << 1/(RB). For example, to support 4 users with B = 10 MHz each, the rise time
for the switches we used in hardware was 10 nano seconds, less than 1/(40 ∗ 106) = 25ns. To
support say, 10 users with 100 MHz bandwidth, we would need faster than 1ns switches. This
hardware already exists in form of high-speed diodes/mixers, or very fast analog voltage level
changing TTDs which will be used in future versions of GreenMO.

• Next, we need a high sampling rate ADC. Again to support 4 virtual chains with 10 MHz each,
we could get away with a standard WARP SDR that has 40 MHz sampling rate. In the next
version of GreenMO, we can use the ADI FMCDAQ2 that support 1 GHz ADC/DAC, and we
have already started integrating this with RF components.

• Other important hardware are a linear, maybe ≈ 4× RB bandwidth RF chain (so that all the
harmonics created by switching are carried across, with high fidelity). This requires a nice PCB
design, well simulated in ADS/HFSS and ensure that PCB losses are minimized.

4

