A WiFi and Bluetooth Backscattering Combo Chip Featuring Beam Steering via a Fully-Reflective Phased-Controlled Multi-Antenna Termination Technique Enabling Operation over 56 Meters

Shih-Kai Kuo, Manideep Dunna, Dinesh Bharadia, and Patrick P. Mercier

Self Introduction

- B.S. degree in electrical engineering from National Taiwan University, Taipei, Taiwan, in 2019
- M.S. degree in electrical and computer engineering from the University of California at San Diego (UCSD), La Jolla, CA, USA, in 2021
- Currently Ph.D. student at UCSD
- Research interest: low power backscatter techniques, analog and RF IC design

IoT devices in smart home/office

Existing commodity-compatible standard: **WiFi & BLE**

How can small IoT devices leverage **existing WiFi/BLE mesh network** to communicate?

IEEE 2022© International Solid-State Circuits Conference

Method I: Conventional WiFi/BLE transceivers (TRXs)

Robust communication with long range

But conventional TRXs require 10s~100s mW active power Size and life of IoT devices are limited

Can we instead unlock a new way of ultra low power connection?

IEEE 2022© International Solid-State Circuits Conference

Method II: WiFi/BLE-compatible backscatter

Backscatter link budget and range challenges

Problems caused by limited backscatter range

How can we increase range for backscatter?

IEEE 2022© International Solid-State Circuits Conference

Outline

Motivation

- Prior-art and proposed transmission-line-less fully reflective backscatter
- Prior-art and proposed MIMO beam-steering backscatter
- Proposed BLE backscatter
- Proposed WiFi/BLE backscatter combo chip
- Circuit implementation
- Measurement results
- Conclusion

Conventional On-off Keying (OOK) backscatter

Udo Karthaus, Martin Fischer, JSSC03

OOK modulation only & reflected spectrum overlaps with incident one

Quadrature Phase Shift Keying (QPSK) frequency translation backscatter

Double-side-band modulation occupies 2 adjacent channels

Single-side-band (SSB) modulation backscatter

P.-H. P. Wang et al., ISSCC20

Quadrature IF modulates quadrature loads[™] SSB

SSB QPSK backscatter with absorptive component

Power combiner & absorbing termination less reflected power AP-to-AP range is limited to 21m with tag in the middle

Fully-reflective SSB QPSK backscatter with power splitter/combiner

Power splitter still required AP-to-AP range limited to 26m with tag in the middle

IEEE 2022© International Solid-State Circuits Conference

Is power splitter/combiner required?

Is it possible to re-create the effective loads directly w/o power splitter?

Power splitter/combiner removal

Eliminating I/Q paths but instead driving the loads with a SP4T switch $((\mathbb{F}_{00},\mathbb{K},\mathbb{K}),\mathbb{K}) \rightarrow \neq (0,0,0) \rightarrow \mathbb{K}_{1} \rightarrow \mathbb{K}_$

By directly selecting loads, power splitter can be removed, and $|\Gamma|$ can be 1 instead of 0.707, which improves IL by 3dB

IEEE 2022© International Solid-State Circuits Conference

Proposed t-line-less fully-reflective SSB QPSK backscatter

Quadrature IF clocks further drive SP4T reflector

IQ tag data is first up-converted to IF via SSB digital mixer

Outline

- Motivation
- Prior-art and proposed transmission-line-less fully reflective backscatter
- Prior-art and proposed MIMO beam-steering backscatter
- Proposed BLE backscatter
- Proposed WiFi/BLE backscatter combo chip
- Circuit implementation
- Measurement results
- Conclusion

Van-Atta retro-reflective backscatter

IEEE 2022© International Solid-State Circuits Conference

Van-Atta SSB QPSK backscatter

M. Meng et al., *ISSCC21*

Phased array ^H Beam-steering backscatter

RF phase shifter is still required, which is not easily tunable with low power

IEEE 2022© International Solid-State Circuits Conference

Proposed MIMO beam-steering SSB QPSK backscatter

Multiple SP4T reflectors + phased-controlled IF clocks

□ beam-steering backscatter

MIMO enables directional gain and compatible with mesh network

IEEE 2022© International Solid-State Circuits Conference

Outline

- Motivation
- Prior-art and proposed transmission-line-less fully reflective backscatter
- Prior-art and proposed MIMO beam-steering backscatter
- Proposed BLE backscatter
- Proposed WiFi/BLE backscatter combo chip
- Circuit implementation
- Measurement results
- Conclusion

BLE backscatter scheme

BLE uses FSK with 500kHz tone separation

<u>When tag data = 0</u>

<u>When tag data = 1</u> **BLE** channel Do freq. translation and Do only freq. translation (Ex. Ch.37) interchange the BLE symbol f_{center}= 2402 MHz Ch. Backscatter Ch. Incident Ch. Backscatter Ch. Incident Backscatter center f_{IE} -0.5MHz freq. difference = f_{IE} f_{incident}+f_{IF} t +f f_{ic}+0.5MHz **T**incident incident 500kHz

When tag data=1, $f_{Backscatter}$ can be either f_{IF} + 0.5MHz or f_{IF} - 0.5MHz depending on the incident signal

But incident data is unknown!

BLE backscatter scheme

Solution: Mix 0.5MHz with f_{IF} to generate two freqs. by XOR gate. Image landed 1MHz away can be filtered out by RX.

IEEE 2022© International Solid-State Circuits Conference

Outline

- Motivation
- Prior-art and proposed transmission-line-less fully reflective backscatter
- Prior-art and proposed MIMO beam-steering backscatter
- Proposed BLE backscatter
- Proposed WiFi/BLE backscatter combo chip
- Circuit implementation
- Measurement results
- Conclusion

Block diagram of proposed WiFi/BLE combo tag

IEEE 2022© International Solid-State Circuits Conference

Block diagram of downlink

Block diagram of uplink

- A PLL-based IF clock generator enabled by wake-up signal
- PLL provides flexible frequency translation for WiFi/BLE backscatter

IEEE 2022© International Solid-State Circuits Conference Termination Technique Enabling Operation Over 56 Meters

Outline

- Motivation
- Prior-art and proposed transmission-line-less fully reflective backscatter
- Prior-art and proposed MIMO beam-steering backscatter
- Proposed BLE backscatter
- Proposed WiFi/BLE backscatter combo chip
- Circuit implementation
- Measurement results
- Conclusion

IF clock generator

Ring oscillator-based integer-*N* PLL generates 6-phase of outputs

24-phase IF clocks are further generated by divide-by-2 blocks

Beam-steering modulator

IEEE 2022© International Solid-State Circuits Conference

Outline

- Motivation
- Prior-art and proposed transmission-line-less fully reflective backscatter
- Prior-art and proposed MIMO beam-steering backscatter
- Proposed BLE backscatter
- Proposed WiFi/BLE backscatter combo chip
- Circuit implementation
- Measurement results
- Conclusion

Die micrograph

• 65nm CMOS

• 0.42mm² active area

WiFi/BLE SSB backscatter spectra

International Solid-State Circuits Conference

Incident signal appears due to finite circulator isolation and close TX-RX distance for testing purpose

- Incident signal at WiFi CH6 reflected to either CH1 or CH11 with ~15dB image rejection
- WiFi beam-steering shows ~10dB MIMO gain improvement compared to single-antenna case
- BLE backscatter shows 13dB image rej. when incident signal at CH38 and reflected signal at 22.4: A WiFi and Bluetooth Backscattering Combo Chip Featuring Beam Steering via a Fully-Reflective Phased-Controlled Multi-Antenna

WiFi beam-scattered pattern

M. Dunna et al., Arxiv 2021

Wireless experiment

IEEE 2022© International Solid-State Circuits Conference

Comparison to prior art

	ISSCC 2020	ISSCC 2021		VLSI 2021	This Work	
Technology	65 nm	65 nm		180 nm	65 nm	
Core Area (mm ²)	0.34	0.41		1.62	0.42	
Backscatter Scheme	Partially Absorbing QPSK	Fully Reflective QPSK	Retro- reflective	DBPSK	QPSK Fully-reflective MIMO Beam- steering for WiFi	
			MIMO QPSK		SSB FSK for BLE	
Single Side Band?	Yes	Yes	Yes	No	Yes	
AP-to-AP Range with tag in the middle (m) (TX peak power = 30dBm)	21	26 (Single- antenna)	46 (MIMO)	16	Singie antenna	35
					Beam-steering	56
Compatible with commodity WiFi/BLE hardware	Yes	Yes	Partial	No - tone generator needed	Yes	
OOK Wake-up Power (µW)	2.8	4.5		0.15	5.5	
Backscatter Communication Power (µW)	28	32	38	2.5	WiFi/BLE w/ single antenna	39
					WiFi Beam-steering	88

Outline

- Motivation
- Prior-art and proposed transmission-line-less fully reflective backscatter
- Prior-art and proposed MIMO beam-steering backscatter
- Proposed BLE backscatter
- Proposed WiFi/BLE backscatter combo chip
- Circuit implementation
- Measurement results
- Conclusion

Conclusion

A transmission-line-less WiFi/BLE combo backscatter IC with improved range (35m for single antenna & 56m for MIMO) and MIMO beam-steering ability towards pragmatic adoption in large inter-AP environments

Acknowledgement: This work was supported in part by the National Science Foundation (NSF) under Grant No. 1923902 and UC San Diego Center for Wearable Sensors

