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Abstract
Indoor localization has been studied for nearly two decades
fueled by wide interest in indoor navigation, achieving the
necessary decimeter-level accuracy. However, there are no
real-world deployments of WiFi-based user localization algo-
rithms, primarily because these algorithms are infrastructure
dependent and therefore assume the location of the access
points, their antenna geometries, and deployment orientations
in the physical map. In the real world, such detailed knowl-
edge of the location attributes of the access Point is seldom
available, thereby making WiFi localization hard to deploy. In
this paper, for the first time, we establish the accuracy require-
ments for the location attributes of access points to achieve
decimeter level user localization accuracy. Surprisingly, these
requirements for antenna geometries and deployment orienta-
tion are very stringent, requiring millimeter level and sub-10◦

of accuracy respectively, which is hard to achieve with manual
effort. To ease the deployment of real-world WiFi localiza-
tion, we present LocAP, which is an autonomous system to
physically map the environment and accurately locate the
attributes of existing wireless infrastructure in the physical
space down to the required stringent accuracy of 3 mm an-
tenna separation and 3o deployment orientation median errors,
whereas state-of-the-art algorithm reports 150 mm and 25o

respectively.

1 Introduction

Indoor navigation requires precise indoor maps and accurate
user location in these maps. Google, Bing, Apple or Open
Street Maps have made considerable progress towards pro-
viding precise indoor maps for notable locations like airports
and shopping malls [1–4]. On the other hand, there are two
decades of research on indoor localization using WiFi in-
frastructure that achieve decimeter accurate user locations
[22, 30, 37, 39, 50, 51, 53, 58, 59, 65–69]. Despite these in-
novations, we still cannot use our smartphones to navigate in
these indoor environments.

The key reason for this inability is the absence of the bridge
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Figure 1: Implementation of LocAP: (Left) An unknown
environment with unknown AP attributes where LocAP is
deployed. (Right) LocAP once deployed determines the AP
attributes in the physical map enabling triangulation based
user localization.

providing the context of the physical map to the user locations.
While there is recent work [8] that bridges this gap, it, like
other state-of-the-art localization algorithms [37, 59, 66], is
dependant on the accurate location attributes of the WiFi
access points (APs) in the physical maps of these airports and
malls. To understand what we mean by location attributes,
consider the setup shown in Figure 1(right). The smartphone
user is triangulated in an indoor environment by estimating
the angle subtended by the user at each of the access points.
This approach inherently assumes to have accurate knowledge
of each access point’s location and its deployment orientation
(the angle at which the access point is placed in the given
physical map). Further, to estimate the angle made by the user
with respect to an access point, the channel state information
(CSI) based WiFi localization algorithms need to know the
exact antenna placements on these access points.

One can endeavor to manually locate each of these access
points in the environment, but that would be labor-intensive,
time-consuming and even impossible sometimes because of
the following reasons. First, these access points (AP) are
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usually not easily visible; they may be located behind a wall
or pillar. Second, even if the AP is visible, most of the access
points are encased by the manufacturer, making it difficult to
know the exact information of the antenna placements on the
access point. Third and finally, even if we can estimate the
antenna placements on the access point from the datasheet
provided by the manufacturer1, the AP’s deployment orienta-
tion has to be carefully calibrated to the indoor maps within
an error of a few degrees. Thus, we need a system that can
help in accurate mapping of the existing WiFi infrastructure,
which does not involve any manual labor or time.

In this paper, we present LocAP, an autonomous and ac-
curate system to estimate access point location attributes –
access point location, antenna placements, and deployment
orientation. We call this process of predicting accurate ac-
cess point attributes as reverse localization. LocAP is the first
work to establish the requirements for reverse localization as
follows:
Accurate Access Point Locations: As shown in Figure 2a,
any error in AP location is translated to an error in the location
of the user. So, any error exceeding a few tens of centimeters
in access points’ location is going to adversely affect the
decimeter-level user localization. Thus, LocAP needs to locate
the access point accurate to within tens of centimeters.
Accurate Antenna Separation: Different APs have different
antenna placement configurations and the angle made by the
user is measured at the access point using the spacing between
antennas. So, any error in measuring antenna placements is
going to cause a rotation error at the user. For example, error
in antenna separation by 4 mm causes 12o of error in the angle
of user measured at the access point, which translates to up to
1 m of error for a user 5 m away from the access point. Thus,
LocAP needs to predict the antenna separation accurately to
within a few millimeters.
Accurate Deployment Orientation: Finally, the access
points can be placed in any orientation in the environment.
Any error in measurement of orientation directly translates to
the predicted angle subtended by the user at the access point.
Hence even 10o of error in deployment orientation causes up
to 90 cm of user location error for a user located just 5 m
away from the access point. Thus, LocAP should resolve the
deployment orientation of the access point accurate to less
than 10o of error.
Automation: LocAP’s goal is to require no manual effort
for the reverse localization, and achieve the stringent require-
ments discussed earlier. Furthermore, there should be zero
effort to associate these positions with the existing indoor
maps, ideally in an autonomous way.

LocAP achieves the aforementioned requirements and en-
ables automated and accurate reverse localization of the ac-
cess points. We achieve autonomy by deploying LocAP on
a bot retrofitted with a multi-antenna WiFi device used in

1Datasheets, though publicly available do not talk about antenna place-
ments or dimensions [6, 7, 17, 28, 47, 48, 57].
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Figure 2: LocAP’s Motivation: The user location is pre-
dicted wrong due to different errors in access point’s estimated
details. (a) Translation: Predicting the wrong location of the
AP. (b) Dilation: Predicting wrong antenna separation on the
access point results in an error in angle estimated,(θobs 6= θexp)
of the user. (c) Rotation: Predicting the wrong orientation of
the AP.

[8]. When deployed in a new environment, the bot first maps
the physical environment. Next, it associates with existing
AP infrastructure by collecting multi-antenna channel state
information, and pairing it with its predicted location in the
physical map as shown in Figure 1(left). LocAP uses this
information to build a database of the deployed WiFi infras-
tructure consisting of all the access point attributes meeting
our stringent accuracy requirements. This database of accu-
rate AP location attributes can then be used for decimeter
level user localization as depicted in Fig. 1(right)

The main technical contributions of LocAP to achieve the
above requirements can be summarized as follows:
cm-accurate Access Point Localization: We make an im-
portant observation that accuracy of triangulation based WiFi-
localization methods improves with an increasing number
of anchor points with known locations. In essence, creating
an array of 100’s of antennas measuring CSI at known loca-
tions achieves cm-level localization, which is not feasible in
practice2. To overcome this, LocAP leverages the CSI data
collected by the bot at 100’s of predicted locations, mimick-
ing 100’s of virtual antennas with known locations. However,
these predicted locations suffer from a varying amount of
inaccuracy. Hence, LocAP designs a weighted localization
algorithm, which weights each location-CSI data-point with
a uniquely defined confidence metric capturing the accuracy
of the predicted location.
mm-accurate Antenna Geometry Localization: We have
seen earlier that both mm-error in antenna separation and er-
ror in deployment orientation lead to in-accurate Angle of Ar-
rival (AoA) measurement at the access point, which impedes
user-triangulation. Thus, LocAP tackles antenna separation
and deployment orientation together by achieving millimeter-

2typical indoor settings are 1000-2000 sq. ft., which would imply deploy-
ing an antenna every 100 sq. ft.
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level accuracy in predicting the antenna geometry. The first
thought would be to use 1000’s of virtual antennas to achieve
cm-accurate localization [39] by locating individual antenna
geometry on the AP. But, this idea can only achieve accuracy
at the cm-level and will not suffice to achieve mm-level details
of the antenna geometry. Our key observation is to localize the
relative antenna geometry between two antennas, primarily
because the relative wireless channel between the two anten-
nas can be measured very accurately by measuring their phase
information. The phase information is measured at the carrier
frequency level (λ=60 mm equivalent to 360o ), hence even
phase measurement accurate to 10’s of degrees achieves 1-2
mm accuracy. However, this works for only relative antenna
separation d < λ

2 . LocAP designs a novel algorithm that uses
relative channel information across multiple bot locations
to solve for any antenna geometry, unrestricted by antenna
separation, to mm-level accuracy.
Automation – Augmenting the SLAM algorithms: To
avoid any manual labor and errors, LocAP is deployed on
a SLAM (Simultaneous Localization and Mapping) based
autonomous bot developed by us [8]. This bot provides us
with a physical map and the location and heading of the bot in
this physical map at all times. We pair these location-heading
measurements with the CSI collected by the mounted WiFi
device. However, even the best of SLAM algorithms report
the location to be in-accurate up to 10-20 cm, which can have
a detrimental effect on the AP location attributes. Therefore,
LocAP develops a confidence metric whose core idea to look
at the covariance of measurements across consecutive frames.

Further, the implementation of LocAP does not need any
modification at the existing access points, as it is deployed
on a custom made bot [8] that is mounted with a Quantenna
client. The Quantenna client readily reports the channel-state-
information (CSI) of the associated access point. We evaluate
LocAP in an indoor environment of 1000 sq ft area with multi-
ple off-the-shelf access points and 2 different antenna config-
urations – rectangular and linear3 We achieved the following
results satisfying the aforementioned accuracy requirements:
Relative Antenna Geometry Prediction: LocAP’s relative
reverse localization for the antenna separation has a median er-
ror of 3 mm (50× improvement), and a median error of 3o(8×
improvement) for deployment orientation, while state-of-the-
art achieves a median error of 150 mm and 25o respectively.
Access Point Localization: LocAP’s reverse localization of
the access points achieves a median localization error of 13.5
cm improving by 35% over the state-of-the-art WiFi localiza-
tion algorithms [37].
Case Study-User Localization: State-of-Art user localiza-
tion is deployed using the access point attributes measured
manually and with LocAP. We observe user localization er-
rors of 78 cm and 50 cm respectively, a decrease in the error
of about 36%.

3these configurations generalize the more generic antenna deployments
found on the commercial off the shelf WiFi access points.

2 Requirement and Motivation

It may seem natural that user localization algorithms [37, 53,
59, 67] could be sufficient for reverse localizing the access
point’s location attributes – location, antenna geometry and
deployment orientation. Surprisingly, it turns out that require-
ments for reverse localization of the access are stringent. To
define these requirements, we conduct empirical evaluations
from the standpoint on how various errors in AP attributes ad-
versely affect the state-of-the-art decimeter level localization
algorithms.

Our empirical setup contains four access points, each with 4
antennas, setup in a 25ft×30ft space. The user device is placed
at 100 different locations while the access points locate the
user using an algorithm similar to [37]. Specifically, we aim
to achieve decimeter-level localization accuracies for user
WiFi localization algorithms and thus set a hardbound that
no more than 50 cm median error for user localization can be
tolerated.
Error in the AP’s location Firstly, in the above-described
setup, we incrementally increase the error in all the access
points’ locations. Next, we estimate the user location for each
of these erroneous access point locations and calculate the
user localization error. In Figure 3a, we plot the median user
localization error across the access point errors reported. We
can see that if the access point locations have an error of more
than a few centimeters, the median localization error starts
to increase. From this, we can infer that the required level of
accuracy for the reverse localization of APs should be in the
order of centimeters.
Error in the antenna separation Second, AoA based local-
ization algorithms make use of the relative phase information
between two antennas. Earlier, we have seen that the rela-
tive antenna position has to be estimated accurately to have
exact measurements of angles. Even when the access point
positions are reported correctly, we can observe that the lo-
calization error increases with just a few millimeters of errors
in the reported relative antenna positions as shown in Figure
3b. This observation is intuitive because the relative antenna
distances are usually of the order of a wavelength of the trans-
mitted signal, which in the case of WiFi is 6cm. So, any error
which is greater than a few millimeters is going to make a
huge difference in the relative phase measured at the access
point.
Error in the Deployment Orientation Finally, the antenna
array can be oriented in any direction. It is also important to
know the exact deployment orientation of the antenna array.
Errors in this orientation will proportionately affect the an-
gle of arrival measurements made at the access points. We
observe that the greater the error in deployment orientation
prediction, the higher the median localization error becomes
as shown in Figure 3c. From this plot, we can see that even 7o

will degrade the median user localization accuracy to more
than 50 cm.
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Figure 3: Robustness of localization accuracy to Access Point (AP) location errors:(a) Shows that median localization error
increases with increase in error of estimated AP location.(b) Shows how median localization error increases with increase in error
of estimated antenna locations. (c) Shows how median localization error increases with increase in error of estimated antenna
deployment orientation.

In summary, we should locate the access point’s location
with less than 30 cm of error, the antenna separation within
5 mm of error and the deployment orientation to less than
7o of error. While these locations are typically mapped man-
ually by humans using specialized equipment like VICON
[55] or laser-based range finders [11], this process is time-
consuming, labor-intensive and error-prone. So, we need a
system that can accurately localize access points attributes
satisfying these stringent requirements. Note that the most
stringent requirements are the mm-accurate antenna separa-
tion and sub-7 degree deployment orientation. The state-of-
the-art [37, 39, 53, 67] localization algorithms can locate the
individual antennas to within a few 10 centimeters even by
deploying hundreds of AP’s in a given environment, which is
insufficient to determine the antenna geometry as per required
specifications established earlier in this section. Further, there
are relative localization algorithms [38, 61, 64] which track
the user’s location across contiguous observations few millim-
ieters apart. These ideas could potentially be used to find the
relative antenna geometry. But, these tracking algorithms
assume that the two relative locations are less than λ/2 apart
[6, 7, 17, 28, 47, 48, 57] but the antenna separations on most
access points are more than λ/2 apart, where there is an ambi-
guity that cannot be resolved. So, we design a system, LocAP,
which fulfills these requirements and locates the access points
and their antennas with the desired level of accuracy

3 Design

In this section, we present the design of LocAP. Recall that
our main goal is to autonomously determine access points’
location attributes within the reference coordinates of the
physical map to enable easily deploy-able WiFi-localization.
LocAP deploys a SLAM based autonomous bot developed
in [8] to map the environment. The autonomous bot provides
it’s location and heading with respect to the environment’s
map. Simultaneously, a four antenna WiFi device retrofitted

on the bot, connects with the existing WiFi infrastructure,
all the while reporting the CSI information at each instance.
Furthermore, to avoid changes to deployed AP infrastructure,
we perform all the processing on the bot. LocAP, therefore,
is provided with the location and orientation of the bot with
respect to the physical map and the CSI data from the WiFi
device on the bot, which connects with the existing WiFi
infrastructure. We design LocAP to use these inputs to provide
accurate access point attributes–location, antenna separation,
and deployment orientation with respect to the physical map.

First, we discuss how to achieve the cm-level accurate loca-
tion of the AP that also accounts for inaccuracies in reported
bot poses. Second, we present LocAP’s algorithm to estimate
the antenna separation and deployment orientation of all the
APs that needs to achieve the stringent requirement of mm-
level accuracy. In both of these scenarios, we assume we
have the CSI corresponding to the direct path and later in Sec-
tion 3.3 we discuss how we tackle the presence of multipath in
the environment and recover the direct path’s CSI. Finally, we
present the SLAM-based bot design, which does the best ef-
fort to provide the necessary measurements mentioned above.
But often, these measured poses are not accurate. So, LocAP
builds an algorithm which reports a confidence metric for each
measured pose. This confidence metric helps us surmount the
errors in the bot locations to calculate AP location attributes.

3.1 Locating the Access Point
In this subsection, we focus on identifying the position of one
of the access point’s antenna. This position of the antenna
would then be representative of the access point’s location
and we refer to this as the first antenna in the subsequent
text. Recall that the access point’s location has to be esti-
mated accurately to cm-level. A simple solution can be to
utilize the existing WiFi localization approaches to locate
one of the antennas on the access point, which would then
become the access point’s location. Unfortunately, state-of-
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Figure 4: First Antenna Localization: Gives an overview of
how triangulation from 10s of bot locations locates the access
point accurately to within few centimeters.

the-art localization algorithms only report decimeter level
location estimates. However, we make an interesting obser-
vation: these algorithms show increasing location accuracies
with an increase in the number of access points deployed in
an environment. In our scenario, we have a mobile bot which
collects CSI data from the deployed access point at multi-
ple anchors. This bot covers a large area setting up 100’s of
anchors which aids in cm-accurate first antenna localization.

Owing to this setup of LocAP, we can employ an angle of
arrival estimation algorithm similar to [37] and estimate the
direct path’s AoA, αbot

p for pth bot location (p = 1,2, . . . ,P).
We measure these AoA’s with respect to the bot’s local axis
(X’-Y’) corresponding to the first antenna’s transmission for
each bot location up = [up, vp]. To enable this AoA based first
antenna triangulation, we should also know the direction of
the bot’s heading (θp) with respect to the global axis (denoted
by X-Y in Figure 4), which is reported by the bot as mentioned
earlier. With (up,θp and αbot

p ) we can find the first antenna
location as an intersection of P lines:

Linep ≡ (y1− vp) = tan(90◦− (αbot
p +θp))(x1−up) (1)

Ironically, the AoA based triangulation accuracy is
bounded by the errors in the bot’s reports of its location,
(up,vp) and heading, θbot

p . Clearly, this creates a vicious un-
ending loop – to predict the antenna locations we need ac-
curate bot measurements and vice-versa to predict the bot’s
locations. To overcome this problem, we take advantage of
SLAM algorithms [21] to get accurate ground truth estimates
of the bot location and heading. Unfortunately, SLAM-based
bots do not have 100% confidence in all the location estimates
they report, forcing us to only cherry-pick the measurements
which we believe are accurate. Based on this intuition, we
design a confidence metric, wp ∈ [0,1] for each bot location
up. Further details on the design of the confidence metric are
discussed in Section 3.4. This confidence metric implies that
the bot is more confident with the reported pose the closer
it is to one. We thus implement a low-confidence rejection
algorithm, which rejects the measurements with confidences,
wp, in the lowest 20% (Using only b0.8×Pc lines).

We use these confidences in combination with the rest of
our b0.8×Pc line equations to define a weighted least squares
problem to optimally solve for the first antenna location as

follows:
min

x1
||W (Sx1− t)||2 (2)

where x1 = [x y]T is the first antenna location,
W = diag(w1,w2, · · · ,w0.8P) is the weight matrix,
S(p, :) = [cos(αbot

p + θp) − sin(αbot
p + θp)]

T and
t(p) = [up cos(αbot

p + θp) − vp sin(αbot
p + θp)]. Thus, we

estimate of the first antenna’s location x1 which corresponds
to the access points location.

3.2 Determining Antenna Separation and De-
ployment orientation

As described above, we can leverage the motion of the bot to
identify the accurate location of one antenna on the access
point. One might wonder if it is possible to apply this algo-
rithm iteratively to identify the location of each antenna on
the access point and hence recover the relative placement of
antennas. However, it is not so straightforward. In particular,
the geometry prediction needs to be an order of magnitude
more accurate than the location prediction. While it suffices
to measure the location of the access point to cm-level, the
geometry, i.e. the relative position of antennas, needs to be
mm-accurate. While combining across 10s of bot locations
provides antenna location accurate to cm-level, it does not ex-
tend to mm-accurate antenna geometry by combining across
100s or even 1000s of bot locations as shown in the prior art
[39]. This problem occurs owing to the asynchronous clocks
between the access point and the bot’s WiFi device when
measured at a single antenna at the access point.

To overcome this problem we make a key observation
- in contrast to the phase measured at one antenna on the
access point, the relative phase across two antennas is rid of
synchronization errors as they share the same clock. Further,
at WiFi 11ac’s 5GHz carrier frequency, a wavelength of 6 cm
corresponds to a phase difference of 2π radians. Empirically,
we have observed that we can easily resolve phase differences
up to π/18 radians (10o), which facilitates measurement of
the distance between two antennas with a resolution of 2 mm,
thus enabling us to locate the antenna geometry accurately
to within few millimeters. Hence, our first key insight is to
measure the relative antenna separations, di, and deployment
orientations, ψi, for all the NAP antennas on the access point
with respect to the first antenna (i = 2,3, . . . ,NAP).

Unfortunately, although the relative phase information can
resolve relative antenna separation to within 2mm, it cannot
resolve for antenna separations greater than λ/2. To further
understand this, consider an example scenario where the bot
is moving in a circular arc about the two-antenna access point
in steps of small angles as shown in Figure 5a. To avoid over-
crowding of subscripts, we consider a two antenna access
point and drop the access point’s antenna indexing, i. Similar
analysis can be performed pairwise on all the antennas on
the access point with respect to the first antenna. Now, to
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Figure 5: Estimating AoD from phase difference: (a) A sample case where the bot is in circular arc around the AP (b) Phase
difference ∆φ vs the orientation of the bot β assuming the deployment orientation of the AP, ψ = 0 (c) Slope d∆φ

dβ
vs the orientation

of the bot β when compensated for the orientation of the access point.

locate the second antenna with respect to the first antenna, we
analyze relative phase across these two antennas. We know
that for the bot’s location, up, the phase difference between
these two antennas corresponding to the direct path, ∆φp, can
be estimated as:

∆φp = mod
(

2πd
λ

sin(90◦− (βp−ψ)),2π

)
(3)

where, the parameters of interest ψ and d are antenna de-
ployment orientation (with respect to the X-axis) and antenna
separation respectively. βp is the angle subtended by the
bot’s location at the access point with respect to the global
X-axis. From the inset in Figure 5a, we can see that the angle
of departure from the AP is given by

α
AP
p = 90◦− (βp−ψ) (4)

and the extra distance travelled (represented by the red-dashed
segment) is given by d sin(αAP

p ). This extra distance travelled
induces the phase difference given in Equation 3. Thus, the
phase difference across two antennas can help us estimate
the antenna separation, d and deployment orientation ψ. To
better understand this relation, we plot ∆φp for all the bot
locations along the circular arc against the angle subtended
by the bot, βp, for various antenna separations d in Figure 5b.
From this plot we can see that for d ≤ λ/2, we have a unique
mapping between the phase difference, ∆φp, and the bot’s
location, but for d > λ/2 we have ambiguous solutions that
prevents us from estimating d and ψ. The ambiguity occurs
because the phase difference we measured is a modulus of
2π, which means for a given ∆φp, the actual phase difference
can be 2npπ+∆φp, where np is any positive integer. This
means we have three unknowns, (d,ψ,np) to solve for, given a
single phase difference value, ∆φp. Furthermore, even for each
additional bot location we have a new ∆φp+1 estimate, we also
add an extra unknown np+1 making it impossible to uniquely
solve for d and ψ. LocAP’s key insight is that, in contrast
to the phase difference ∆φp, the differential phase difference

with respect to the bot’s angle at the AP (βp) for optimally
small increments of βp, has a unique one-to-one mapping as
shown in Figure 5c. So, the second key observation we make
is that while the phase difference is not uniquely solvable for
d > λ/2, the differential phase difference is uniquely solvable.
Intuitively, two close bot positions will have the similar phase
wrap-around’s, and hence, taking the difference of the phase
differences, ∆φp2 −∆φp1 , can eliminate the ambiguity.

So far we have considered that the bot is moving along a
circular trajectory. In fact, LocAP does not restrict the bot’s
motion to a circular arc and can work with arbitrary motion,
as long as the CSI is measured regularly. To understand the
exact implementation of LocAP’s relative antenna geometry
prediction, we consider a more free-flow path as shown in Fig-
ure 6. Concretely, determining the relative antenna geometry
requires two parameters – the distance between antennas, d,
and the deployment orientation of the antenna array, ψ, as can
be seen from Figure 6. The bot moves to P distinct locations
along a pre-determined trajectory about the AP and collects a
series of P CSI measurements, Hp (p = 1,2, · · · ,P), while si-
multaneously reporting the bot’s locations, up. The bot makes
an angle βp with respect to the global X-axis. Next, for each
position of the bot, up, we evaluate the differential phase dif-
ference d∆φp

dβp
between the two antennas on the access point.

Differentiating Equation 3, we get

d∆φ

dβ
=−2πd

λ
cos(90◦− (β−ψ)) =−2πd

λ
sin(β−ψ) (5)

But, for incremental movements of the bot, the differential
phase difference in Equation 5 can be approximated as

d∆φp

dβp
≈

∆φp+1−∆φp

βp+1−βp
(6)

The bot traces P(> 3) positions as it moves, which enables
us to obtain the solution from an over-determined system of
equations, consequently reducing the noise level. Thus achiev-
ing highly accurate relative antenna position and orientation,
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Figure 6: Relative Geometry Prediction: Shows the same
setup as in Figure 5a with a two antenna AP making angle ψ

with the positive x-axis and the bot moving about the located
first antenna of the AP in an arbitrary path.

and thereby achieving millimeter-level accuracy for relative
antenna localization. Now to solve for (d,ψ) uniquely as an
over-determined system, it is easier to work with Cartesian
co-ordinates than polar coordinates. So, we fix the location of
the first antenna of the AP, the antenna on the left in Figure 6,
as (x1,y1) and represent the second antenna (x,y) defined in
the global coordinate system as:

(x,y) = (x1 +d cos(ψ),y1 +d sin(ψ))

We rewrite Equation (5) in terms of (x,y) as follows:

d∆φ

dβ
=

2π

λ
[−(x− x1)sin(βp)+(y− y1)cos(βp)] (7)

for p = 1,2, · · · ,P−1

Next, we represent these P set of linear equations in matrix-
vector form as follows,

A
[

x− x1
y− y1

]
= b (8)

where A is a (P−1)×2 matrix and b is a (P−1) sized column
vector defined as

A(p, :) =
[
−sin(βp) cos(βp)

]
(9)

b(p) =
λ

2π

∆φp+1−∆φp

βp+1−βp
, p = 1,2, . . . ,P−1 (10)

We further denote x =
[
x y

]T and x1 =
[
x1 y1

]T . We
estimate x to the following least squares problem:

min
x

||A(x−x1)−b||2 (11)

In this way we can uniquely solve for the cartesian coordinates
of the second antenna with respect to the first antenna.

Note that the two measurements {βp,∆φp} and {βp+1,
∆φp+1} should not be very close to avoid noise amplifica-
tion. On the other hand, the measurements should not be very

far apart to cause an error in the estimation of the deriva-
tive. A large separation between consecutive measurements
can increase the phase difference to more than 2π, thus cre-
ating discontinuities across the series of P measurements.
Our experiments suggest that around 5◦ of angular separation
(βp+1−βp) provides the best results for an antenna separation
in d = [0,4λ], where λ = 6cm is the minimum wavelength in
the 5GHz frequency band. We emphasize the estimated value
of ψ will be in the range of 0≤ψ≤ π because the orientation
of the antenna array can be defined uniquely in 0≤ ψ≤ π.

Generalizing Equation 11, we locate the relative loca-
tion of each antenna on the access point as xi = [xi yi]

T ,
where, i = 2,3, . . . ,NAP, where NAP is the number of anten-
nas on the AP. We finally find the antenna separations as
di =

√
(xi− x1)2 +(yi− y1)2, and the deployment orientation

as ψi = tan−1 yi−y1
xi−x1

, for all the antennas with respect to the
first antenna, x1. Thus, we accurately predict the location,
antenna separation and deployment orientation of the access
point.

3.3 Multipath

So far, in both Section 3.1 and Section 3.2, we have assumed
only one single path from the AP to the bot to solve for
the access point attributes. However, the environment creates
multipath which would cause the previous algorithms to fail
by distorting the phase measurements. We leverage multi-
path rejection algorithm from [37] to estimate the direction
of direct path for AP localization (Section 3.1) and build a
novel algorithm to recover direct path phases as required in
Section 3.2.

Recall from Section 3.1 that locating the first-antenna on
the AP requires direct path AoA information at the bot. How-
ever, the received signal at the bot is usually a mix of signals
arriving from different directions. We leverage multiple an-
tennas on the bot along with the channel information across
multiple subcarriers of the WiFi signal to identify the direct
path and isolate it from other paths similar to prior art [37].
As first step, we collect Nbot ×Nsub CSI-matrix (across Nbot
bot client’s antennas and Nsub subcarriers) as shown in Fig-
ure 7(a). We then apply 2D-FFT transform to estimate the
AoA and Time-of-Flight (ToF) for each arriving path to the
bot (Figure 7(b)). Finally, we estimate the direct path AoA
by observing the signal, which has the least ToF. Intuitively,
the direct path signal travels the shortest distance and thus
has the lowest ToF. Thus, we can use these direct path AoA
estimates to run our AP localization algorithm, as discussed
in Section 3.1.

Note, however, that the direct path AoA information is not
enough for estimating AP’s antenna geometry (Section 3.2).
In this case, our algorithm requires relative phase informa-
tion across multiple AP antennas corresponding to the direct
path signal. Our first insight is to estimate the direct path
channel individually for each AP antenna and use them to re-
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Figure 7: Multipath rejection: (a) Shows the measured
Nbot ×Nsub complex channel matrix. (b) We perform 2D
FFT based transform [9] to estimate the 2D AoA-ToF profile
within which we identify the direct path as the least ToF path.
(c) We then perform a windowing around this peak to obtain
direct path filtered AoA-ToF profile. (d) Finally, direct path’s
Nbot ×Nsub complex channel is estimated by performing a
2D-IFFT on the windowed AoA-ToF profile.

cover the relative phase information. We take the Nbot ×Nsub
CSI-matrix for a fixed AP antenna and estimate the AoA-ToF
profile using the same procedure as described in the previous
paragraph and Figure 7(a),(b). From [37], we know that the
direct path signal is concentrated around the first ToF peak
(in the AoA-ToF domain). So, our insight is to apply appro-
priate window function in the AoA-ToF domain to remove
the adulteration due to multipath (Figure 7(c)) and use this in-
formation to extract the channel corresponding to direct path.
Finally, to extract the direct path signal from this windowed
AoA-ToF profile, we perform 2D-IFFT on this windowed
signal, as shown in Figure 7(d). As we established before,
the same process can be repeated for each AP antenna to fi-
nally obtain accurate AP antenna geometries, as discussed in
Section 3.2.

3.4 Autonomous Bot and Confidence Metrics

In the following section, let us look more closely at the
confidence metric we mentioned in Section 3.1. We deploy
RevBot largely to automate our data collection pipeline and
further implementation details can be found in [8]. The key
pieces of data we need to collect are the bot’s pose informa-
tion (provided by SLAM algorithms), and time-synchronized
CSI estimates for each AP in the environment (provided by
an onboard access point). Unfortunately, the position and
heading reported by SLAM algorithms are not completely
error-free, and the measurements can be adversely affected by
the movement of the bot and the surroundings resulting in er-
rors from 20-25 cm. These particularly worse, low-confidence
measurements, need to be discarded to obtain accurate AP

geometry predictions. But, most SLAM algorithms do not
expose the accurate confidences of a particular reported pose.
Fortunately, we can manufacture a pseudo-confidence metric
by comparing the match of a current measurement with its sur-
roundings. We make these comparisons using 3D pointclouds
generated using an RGB-D camera. Pointclouds are to a 3D
space what pixels are to a 2D image – each point carries an
(x,y,z) coordinate and color information. We make the follow-
ing observation - by looking at the registration accuracy of the
point-clouds generated by consecutive pose measurements,
we can estimate the quality of the relative transformation in
question.

More concretely, let us consider two consecutive measure-
ment frames Fi and Fi+1. We determine the relative transfor-
mation Ti between the two frames by looking at their pose
estimates. Hence, Ti takes us from Fi to Fi+1. Furthermore,
from the RGB-D images captured at these frames, we can
generate point-clouds. By applying Ti to the point-cloud from
Fi, we get an estimate of Fi+1 and we can stitch these two
point-clouds together. If Ti is accurate, then we will get a
perfect overlap of these pointclouds over all the points visible
in both the frames. Based on this intuition, we use the covari-
ance matrix Vi as implemented by [16]. Now, this covariance
matrix accommodates all six degrees of freedom as found in
a 3D environment, three belonging to each direction of trans-
lation and three for each axis of rotation, hence Vi ∈ R6×6.
The first two diagonal elements give us the variance in the x
and y position and Vi[1,2] gives us the co-variance between x
and y. The variance in (x+y) tells us how much wiggle room
there is for the pose in question. Hence, the larger the wiggle
room, the less confident we are in our poses. Furthermore,
we observe that these variances vary in orders of magnitude,
and to linearize our confidence metric, we take the log of the
variance. We calculate the pseudo-confidence metric for Fi as

Ci = log(var(x+ y)) (12)
= log(var(x)+var(y)−2cov(x,y)) (13)

Finally, we normalize Ci, ∀i = 1,2, · · · ,P, between 0 and 1
to determine wi, which are confidences we use in Equation 2
used to filter out the low confidence bot locations.

4 Micro-benchmarks

Before evaluating LocAP’s performance, we must understand
how the error in the ground truth locations reported by the
autonomous bot is affecting the algorithm. We have utilized
the robot implementation described in [8], while replacing
the single antenna client Quantenna platform with a 4 antenna
linear array Quantenna station as shown in Figure 8a. For
that, we first estimate the bot’s location error and analyze its
effects on the accurate prediction of the location of the access
point and the relative antenna geometry on the access point.
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Figure 8: Accuracy of the bot’s ground truth movement:
(a) The bot we used for our experiments, a Turtlebot-2
equipped with a 4 antenna Quantenna board, LIDAR, RGB-
D camera. (b) Depiction on how bot’s error can effect the
relative antenna localization algorithm.

4.1 Error in Bot’s ground truth Location
Since, we are using the same bot setup described in [8] we
use the median localization error reported for the bot in their
experiments. We can observe that the median error ∆r is
around 6cm in this case. Further, we study the orientation
errors within the same setup. We find that the median error
∆β in orientation is 3◦.

Next, we quantify the effect of this error on the accuracy of
locating the access point and determining the relative antenna
geometry.

4.2 Effects of Bot’s Error
First, we estimate the location of the access point. For this
step, we use both the bot’s location and orientation. Hence,
we must look at the errors in both these measurements. We
observe that an error of ∆r in bot’s location error directly
corresponds to an error of ∆r in the access point’s location
prediction, which is 6cm in our scenario. Next, assuming an
orientation error of ∆β, we observe that the error will be R∆β

in the access point’s location, where R is the estimate of the
distance to the access point. Hence, the upper-bound on the
total error propagated will be ∆r+R∆β, which for an average
indoor distance of R = 5m would be 32cm.

Second, for the relative antenna location estimation, from
Figure 8b we can see that the error in bot’s location, ∆r,
translates to error in the angle estimated at the access point,
βi +∆βi, where approximately ∆βi =

∆r
R . Hence, we redefine

A from Equation 9 as A′ = A
[

1 ∆r
R

−∆r
R 1

]
, while b remains un-

changed. Thus we can re-write Equation 11, assuming x1 = 0,
as

min
x′
||A′x′−b||2 (14)

where x′ = x+∆x, and ∆x =
[
∆x ∆y

]T . Solving for ∆x
from the Equations 11 and 14, and simplifying by neglect-
ing higher order error polynomial terms we can see that
∆x = ∆r

R y, ∆y = ∆r
R x. We know that x = [x y]T is of the

order of few centimeters, while ∆r is of the order of few cen-
timeters and R of the order of few meters, which reduces
the whole expression for ∆x and ∆y to be of order of 1

10
th

millimeter, which is well within limits of the tolerance for
relative antenna localization. Thus we observe that the rela-
tive antenna geometry on the access points can be estimated
accurately to within few millimeters using LocAP and its
implementation on our autonomous system.

5 Evaluation

Now that we have seen all the components of LocAP, we eval-
uate LocAP’s performance in a real world deployment to see if
it has conformed to the stringent requirements we established
in Section 2. For this we have deployed our autonomous bot
in two different indoor environments, as shown in [8], that
span 1000 sq. ft. in area, and have 8 different access points de-
ployed at different locations, heights and orientation. Across
these 8 different access points, we have covered two standard
antenna geometries, linear and square antenna arrays, and cov-
ered 5 different antenna separations,{λ/2,λ,3λ/2,2λ,5λ/2},
where λ = 6 cm is the minimum wavelength in the 155 chan-
nel of the 5GHz frequency band. Throughout this experiment,
we collect CSI from multiple access points across space and
time which is used to implement LocAP. The ground truth for
all the evaluations are measured accurately with a commodity
laser range finder [11], that is accurate up to 1mm, after care-
fully marking the axes on the ground and labeling the 1000
sq ft space of experimentation. This entire process of labeling
the experimental space of 1000 sq ft takes a minimum of one
hour spent by a group of at least three people. While there
is two decades of CSI based WiFi localization, LocAP is the
first work to tackle the problem of reverse localization of the
WiFi access points and thus is compared with a state-of-the-
art AoA based user localization algorithm [37], SpotFi, which
combines data across multiple anchor locations.

With the given setup the overview of LocAP’s results are
as follows: LocAP achieves 5 cm of median localization error
for the first antenna localization utilizing the weighted least
squares formulation while a simple least-squares problem
achieves just 8 cm of median localization error. Further, the
relative geometry prediction algorithm of LocAP locates the
access points in this setup accurately with a median antenna
separation error of 3 mm and a median orientation error of 3o,
whereas the state-of-the-art localization algorithms achieve a
150 mm median error for antenna separation and 25◦ median
deployment orientation error as shown in Fgure 9.

A final case study of user localization with the updated
LocAP’s AP attributes showed a reduction of 28 cm in me-
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Figure 9: Single Antenna Localization accuracy: Shows the localization error of locating a single antenna on each AP (a) for
various bandwidths and (b) for various number of antennas on the client on the autonomous bot. (c) Antenna Separation: CDF
plot of error in measuring antenna separation across 8 different access point deployments. (d) Deployment Orientation: CDF
plot of error in measuring deployment orientation across 8 different Access point deployments. The black vertical lines in the
plots represent the requirements established in Section 2

dian user localization compared to the manual AP attribute
mapping.

5.1 AP Location accuracy

To evaluate the access point localization accuracy, we deploy
it in 8 different test scenarios across various heights of ac-
cess points, different locations, environments and distances
from the bot. To get a statistically accurate estimate of these
locations, we have collected the CSI corresponding to each
of these manually determined locations at 20 different time
instants. With this data, we have estimated the location of
each individual antenna on these access points using a least-
squares triangulation algorithms employing [37]. As shown
in Figure 9a, we find that the median error is 5 cm, well below
the established threshold. Unfortunately, manually measuring
locations takes hours of manual time and thus defeats the
purpose of LocAP.

Hence, we deploy LocAP on our autonomous platform
[8] that collects the same amount of data within 5 minutes.
We use the SpotFi algorithm [37] as a comparative baseline
model for the bot data. SpotFi assumes accurate ground truth
locations of the anchors unlike LocAP’s implementation that
smartly rejects anchor locations that are unreliable. We ob-
served that while the baseline model provides a median AP
localization error of 20.5 cm, our weighted least squares with
smart-rejection achieves 13.5 cm showing an improvement of
36% in AP localization.

Further, the bandwidth assumed for these initial results
is 80MHz, while the commodity WiFi access points hardly
operate at these bandwidths. These WiFi access points usually
use either 20MHz or 40MHz bandwidths. To mimic this, we
also collect CSI data with the same setup for both 40MHz
and 20MHz bandwidths. These CSI estimates have then been
utilized to test our algorithm at different WiFi bandwidths.
The CDF plot for variation of localization accuracy across
different bandwidths can be seen in Figure 9a. It is seen that
at higher bandwidths, the localization accuracy is marginally
better, while LocAP still attains centimeter-level accuracy for

localizing the access point.
The design of LocAP relies on the angles estimated from

the CSI data received. While the above-reported results are
for a 4-antenna station, a commodity off-the-shelf WiFi de-
vice does not always have 4 antennas. Hence, we performed
another experiment to observe the effect of change in the
number of antennas on LocAP. This was done by changing
the number of antennas present on the station mounted on the
mobile robot. The CDF plot for the localization error with the
increasing number of antennas can be seen in Figure 9a. The
localization accuracy increases with the increasing number of
antennas on the client mounted on the mobile robot. This is
evidenced by the lower median error observed with 3 antennas
present on the mobile robot as seen in Figure 9b. We further
observe that a 2 antenna WiFi device significantly hurts the
performance of LocAP. This performance degradation is be-
cause for a 2 antenna system, the multipath need to be at least
90o apart for the two different paths to be resolved.

5.2 Relative Antenna Geometry Accuracy

After the location of the first antenna of the AP is obtained,
LocAP finds the positions of the other antennas of the AP
relative to the first antenna. This is achieved by traversing
around the reverse localized antenna of the AP, as described
in Section 3.2. To test this algorithm, we deploy APs with
a linear antenna array and a square antenna array AP in the
two aforementioned environments. Similar to AP location
estimation, we have collected data for each antenna setup
at 40 different time instances to obtain statistically accurate
results. The relative antenna locations on these APs were
measured using LocAP and then compared with the ground
truth to get the relative antenna localization errors and the
deployment orientations. We further compare these results
with that derived by state-of-the-art localization algorithm,
SpotFi [37].
Relative Antenna Separation: We first measure the relative
antenna separation of all the antennas on the access point
with respect to the first antenna and the CDF plot for the

1124    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



0 0.5 1 1.5 2 2.5

User Localization Error (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

With User Labeled AP

With LocAP Labeled AP

Figure 10: User Localization accuracy: Shows the CDF
of localization accuracy after localizing the access points
with LocAP and compared with those results of the manually
labeled APs.

errors in relative antenna localization is shown in Figure
9c. We can see that the median error is about 3 mm for the
relative antenna localization of LocAP while the state-of-
the-art WiFi localization algorithm combined over multiple
bot locations and time instances achieves 20 cm of median
antenna separation error. Thus we show that LocAP achieves
millimeter-level accuracy and meets the 5 mm error threshold
set in Section 2 for predicting the antenna separation of the
access point.
Deployment Orientation: We also measure the deployment
orientation of all the antennas on the access point with respect
to the first antenna and the CDF plot for the errors in the de-
ployment orientation is shown in Figure 9d. We can see that
while the state-of-the-art localization algorithm has a median
error of 25◦, LocAP’s deployment orientation prediction algo-
rithm achieves a median orientation error of just 3◦, meeting
the 7◦ limit set in Section 2.

5.3 Case Study: User Localization
So far we have seen the performance of LocAP in accurately
predicting the access point attributes. We implement LocAP,
to enable CSI based indoor user localization. Further LocAP is
automated by deploying on a bot to remove any manual labor
and time or human errors. As discussed in Section 1, human
based measurements lead to high degree of errors, especially
in the antenna separation measurements that are needed to
be accurate to less than 5mm of errors, especially when the
antennas are housed in a casing whose datasheets provided
by the chip designers do not contain information regarding
the antenna placements on board [28, 47, 48]. Further, the
antenna placement is determined mostly by the manufacturer,
and the vast cardinality of the available vendors and their
models make it impossible to estimate the antenna geometry
from their datasheets, which also mostly do not discuss about
the antenna placements on board [6, 7, 17, 57]. Additionally,
deployment orientation has to be measured accurate to less

than 7◦ of error, which becomes extremely impossible for
manual measurements. While we have shown 3mm (<5mm)
error in predicting antenna separation and 3◦(<7◦) error in
orientation deployment predictions for LocAP. To verify the
effect of both LocAP mapped AP attributes and manually
mapped AP attributes on the state-of-the-art indoor WiFi lo-
calization algorithms [37, 53, 67], we have asked a group
of 25 people to measure the first antenna locations, relative
antenna separations and the deployment orientation of the ac-
cess points deployed in a realistic scenario. Users have been
provided with a laser range finder [11] and compass based
apps used in smartphones.

From these user measurements, we have observed that man-
ual mapping can make their best efforts to map the AP loca-
tions accurate with 21 cm median error , the antenna separa-
tion accurate to within 4 mm of median error, and a median
absolute error of about 13o in measuring the deployment ori-
entation of the access point.

We then deploy LocAP in a 1000 sq ft environment and
locate the 4 access points’ attributes. A moving user that
covers 300 different marked locations in this environment is
then localized using both the manually mapped and LocAP’s
mapped AP attributes and the corresponding CDF is shown
in Figure 10c. From this plot, we can see that while human
mapped AP attributes have a median localization error of 78
cm, LocAP’s AP locations achieve 50 cm median error. Thus
we can see that LocAP solves for the fundamental depen-
dency of CSI based user localization algorithms by accurately
predicting the AP attributes within the physical map.

6 Related Work

There has been significant work in the field of localization
and LocAP’s implementation work on reverse localizing the
access points is closely related to the work in the following
three fields:
Indoor Localization: Wide-scale deployment of WiFi based
infrastructure and WiFi chips on hand-held devices makes in-
door localization promising for various indoor navigation ap-
plications. There has been extensive research in WiFi based in-
door localization algorithms over the past two decades [10, 15,
22, 23, 30, 37, 39, 41, 43, 45, 51, 53, 58–60, 65–69, 72, 74].
While most of the initial work was based on the Received Sig-
nal Strength Information [10, 15, 45, 60, 74] these algorithms
do not achieve meter-level localization, or require extensive
fingerprinting to achieve desired decimeter-level localization.
Thus, most of the later work has been focused on CSI based
localization algorithms [22, 30, 37, 39, 51, 53, 58, 59, 65–69].
LocAP which leverages the idea of Angle of Arrival based lo-
calization. Some such algorithms which have been developed
in the past few years [37, 67] achieve decimeter-level local-
ization and extend it to achieve centimeter-level localization
accuracy. However, these WiFi based localization algorithms
assume the knowledge of the location of the AP to measure
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the user’s location with respect to the AP location. In con-
trast to the above work, LocAP builds a relative localization
technique which provides millimeter-level accuracy for the
antenna geometry on the AP. Furthermore, we also demon-
strate that LocAP can solve for the antenna separation values
larger than a single wavelength (λ).
Source Localization: Solving the problem of accurate knowl-
edge of the WiFi AP locations have been attempted for RSSI
based [26] and CSI based [54] systems. But these algorithms
do not achieve centimeter-level localization for APs, but solve
for the general regional mapping of these access points. These
works are limited by the available bandwidth and thus there
has also been significant work on ultra-wideband (UWB)
based localization [5, 13, 14, 18, 34, 46, 49] and anchor lo-
calization algorithms [12, 19, 20, 34–36]. But these UWB
systems require new infrastructure deployment. Similarly,
there has been significant work towards a beacon based local-
ization system [9, 29, 32, 33, 42, 52, 62, 63, 70, 71, 73] which
have been shown to achieve decimeter-level localization but
also need additional deployment of infrastructure. LocAP
solves the problems of exact WiFi access point localization
and exact antenna placements on WiFi Access Points.
Relative Localization: LocAP solves for millimeter-level ac-
curate antenna placements on any given WiFi access point by
borrowing and extending the principles from wireless track-
ing. Wireless tracking or relative localization is a well-solved
problem unlike localization, with reported accuracies up to
few centimeters and few millimeters [38, 61, 64]. Though
all of these algorithms would need the separation between
two consecutive locations to be tracked to be less than λ/2
distance apart, LocAP solves for relative localization of two
antennas that are at any arbitrary distance from each other,
including for distances greater than λ/2 apart. Thus LocAP
can enable high mobility tracking for indoor WiFi devices.
SLAM Automation: There has been exhaustive research con-
ducted in graph based SLAM algorithms [24]. In LocAP we
employ a SLAM based autonomous bot to report ground truth
and also design a metric to understand the confidence of the
bot for a given ground truth. Confidences for reported mea-
surements can be extracted from the marginal co-variances
of the nodes used to describe these variables and are used to
perform data association [27, 31, 44, 56]. Though these nu-
merical methods are valid, most of them are not implemented
on standard SLAM platforms, to the best of our knowledge.
Furthermore, commonly used frameworks [25, 40] do not
readily expose these marginal co-variances. We extend the
methods described in [16] as a proxy for these internal co-
variance metrics.

7 Conclusion and Future Work

We presented, LocAP, an automated reverse localization sys-
tem of the existing WiFi APs that was successful in achieving
the requirements for accurate localization of AP position,

antenna separation and deployment orientation. After the mo-
bile robot is allowed to traverse the unknown environment,
we have a map of the indoor environment and the reverse
localized positions of all the APs in this environment. If we
consider the map to be part of a coordinate system, we can
provide each access point with its coordinate in the environ-
ment, such that the AP becomes self-aware about its location.
When a new user enters this environment, and associates with
one of these APs, they can locate the user in turn almost
instantaneously relative to their position.

Using the mapping and reverse localization information,
we can provide accurate indoor localization and navigation
for large indoor environments. These accurate AP location
attributes aids many of the networking issues like user loca-
tion based smart hand-off, network load balancing utilizing
both AP locations and client locations and other networking
services based on AP and client locations. Further, with the
emergence of 5G and 11ad/ax wireless protocols, where direc-
tional beams become more and more important, these angle
of arrival estimates that are provided by LocAP, can be further
used to perform smart-beamforming at both the client and the
AP side.

In LocAP we have analyzed the 2D scenario when the
access point is in the same plane as the user to be located. In
a real world deployment the access point is placed at least
a meter above the user height thus subtending a non-zero
polar angle at the access point. This does not affect LocAP’s
algorithm on relative geometry prediction as the cartesian
co-ordinates defined absorb the polar angular term. Thus
unchanging the formulation of the relative antenna geometry
prediction algorithm enabling LocAP to perform accurately
under 3D deployments.
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