

Improving the Range of WiFi Backscatter Via a Passive Retro-Reflective Single-Side-Band-Modulating MIMO Array and Non-Absorbing Termination

Miao Meng, Manideep Dunna, Hans Yu, Shihkai Kuo, Po-Han Peter Wang, Dinesh Bharadia, and Patrick P. Mercier

University of California, San Diego

Miniature and ubiquitous IoT devices

- Enable new class of applications
- Require miniature size, long lifetime, wireless standard-compliant

Place for

Speaker's

video

- Image: Conventional WiFi TRXs require 10s~100s mW active power
- Size of IoT devices is limited by power consumption
- Image: Higher order modulation is achievable but trades-off with power

- ☑ Elimination of active RF circuit enables low power consumption
- Recent work showed compatibility with existing standards
- Image: Higher order modulation is achievable by implementing IF switches
- Range is limited due to passive nature

International Solid-State Circuits Conference

<u>Uplink:</u> $P_{sens,AP} \le P_{TX,TAP} - PL_1 - PL_2 - IL_{TAG}$

- PL1 and PL2 are determined by D1 and D2
- $D1 \times D2$ is limited by system parameters

Tag in meshed network

Place for Speaker's video (5cm x 3.5cm)

Tags can work if placed anywhere in the shaded area

Wang et al., *ISSCC20*

© 2021 IEEE International Solid-State Circuits Conference

- Always in the worst-case scenario
- Range improvement is needed for pragmatic adoption in homes and offices with single AP or co-located APs

Range improvement

Place for Speaker's video (5cm x 3.5cm)

- <u>TX power</u>: can not be increased, standard in commodity WiFi APs and FDA limits to maximum of 30dBm
- <u>RX Sensitivity:</u> ~-100dBm is the standard for commodity WiFi APs
- <u>D1×D2</u>: cannot be improved due to the passive nature of backscatter communication

Improve the <u>insertion loss</u> or apply <u>MIMO gain</u> to improve the covered range

Outline

Place for Speaker's video (5cm x 3.5cm)

Motivation

- Prior-art and proposed SSB QPSK backscatter with retroreflective MIMO array and non-absorbing termination
- Proposed fully-WiFi-compliant backscatter
- Circuit implementation
- Measurement results
- Conclusion

- Tag data modulates the input impedance via a single switch directly
- 🛛 OOK modulation only
- Reflected wave spectrum overlaps with incident wave

- 4 phase of IF clock is selected by IQ tag data and mixed with incident signal via a single switch
- QPSK modulation
- Double-side-band modulation occupies 2 adjacent channels

© 2021 IEEE International Solid-State Circuits Conference

SSB QPSK backscatter

- QPSK modulation
- Single-side-band modulation occupies only one adjacent channel
- 🛛 Range is limited to 10m with co-located APs

© 2021 IEEE International Solid-State Circuits Conference Place for

Speaker's

video

Proposed fully-reflective SSB QPSK backscatter

Place for Speaker's video (5cm x 3.5cm)

© 2021 IEEE International Solid-State Circuits Conference

Proposed fully-reflective SSB QPSK backscatter

 IQ tag data is first upconverted to IF via a SSB digital mixer

12.2: Improving the Range of WiFi Backscatter Via a Passive Retro-Reflective Single-Side-Band-Modulating MIMO Array and Non-Absorbing Termination Place for

Speaker's

video

Proposed fully-reflective SSB QPSK backscatter

Place for Speaker's video (5cm x 3.5cm)

Two 90° separated loads provide 90° rotated reflection coefficients

$$Z_{L,0}$$
= open; $\Gamma_{L,0}$ = 1= $e^{j \times 0^{\circ}}$

$$Z_{L,180} = -j = e^{j \times -90}$$

$$A_{L,180} = -j = e^{j \times -90}$$

•
$$Z_{L,90} = j \times 50 = 3.3 \text{nH} @ 2.4 \text{GHz}; \Gamma_{L,90} = -j = e^{j \times 90^{\circ}}$$

- Quadrature IF signal modulates quadrature RF loading => SSB backscattering
- Insertion loss
- Image: Single antenna => No gain

Passive MIMO – Van Atta antenna array

- Place for Speaker's video (5cm x 3.5cm)
- Passively steers an incident beam back to its source with MIMO gain
- Reflected signal power is increased
- No data can be modulated onto reflected signal

Passive MIMO: one possible implementation

Place for Speaker's video (5cm x 3.5cm)

- Modulated data is reflected with increased signal power
- Absorbing termination decreases signal power
- Image: Double-side-band modulation occupies 2 adjacent channels

© 2021 IEEE International Solid-State Circuits Conference

© 2021 IEEE International Solid-State Circuits Conference

© 2021 IEEE International Solid-State Circuits Conference

Outline

- Motivation
- Prior-art and proposed SSB QPSK backscatter with retroreflective MIMO array and non-absorbing termination
- Proposed fully-WiFi-compliant backscatter
- Circuit implementation
- Measurement results
- Conclusion

International Solid-State Circuits Conference

- Direct envelope detection architecture for low standby power
- 8dB passive voltage gain from input matching network
- WiFi packets counter supports robust WiFi compatible wake-up and multi-tag wake-up regardless of the length of inter-packet gaps

Block diagram of uplink

- A PLL based backscatter modulator enabled by wake-up signal
- PLL provides 25/50MHz frequency translation for backscatter
- IF mixer controls impedance loading for tag data modulation

- Robust WiFi-compatible wake-up regardless of the length of gaps between T0 and T1
- A PLL based backscatter modulator enabled by wake-up signal
- PLL provides 25/50MHz frequency translation for backscatter
- IF mixer controls impedance loading for tag data modulation

Outline

- Motivation
- Prior-art and proposed SSB QPSK backscatter with retroreflective MIMO array and non-absorbing termination
- Proposed fully-WiFi-compliant backscatter
- Circuit implementation
- Measurement results
- Conclusion

Passive pseudo-balun envelop detector

Wang et al., SSCL'18

- Single-ended input RF to differential output BB signal
- 2× conversion gain w/o output BW penalty
- 1.5dB sensitivity improvement
- Tunable V_{th} via DNW device bulk control for PVT

- Ring oscillator based integer-N PLL: 4-phase of output
- Digital SSB IF mixer

Outline

- Motivation
- Prior-art and proposed SSB QPSK backscatter with retroreflective MIMO array and non-absorbing termination
- Proposed fully-WiFi-compliant backscatter
- Circuit implementation
- Measurement results
- Conclusion

Die micrograph

Place for Speaker's video (5cm x 3.5cm)

• 65nm CMOS

0.44mm² active area

© 2021 IEEE International Solid-State Circuits Conference

Downlink sensitivity

Place for Speaker's video (5cm x 3.5cm)

-43.4dBm downlink sensitivity for 1e-3 wake-

SSB frequency translation

- Incident signal at CH6 reflected to either CH1 or CH11 based on logic setting with up to 18dB image rejection
- 11dB improvement of passive MIMO compared to reflective method and 15dB improvement over absorbing method
 2021 IEEE
 2021 IEEE

International Solid-State Circuits Conference

Wake-up and backscatter transient measurement

T0

T1

CTS

Place for Speaker's video (5cm x 3.5cm)

Packet envelope Wake-up signal **Backscatter En** Tag data

Header

Payload

131.

Wireless experiment - range

© 2021 IEEE International Solid-State Circuits Conference 12.2: Improving the Range of WiFi Backscatter Via a Passive Retro-Reflective Single-Side-Band-Modulating MIMO Array and Non-Absorbing Termination Place for

Speaker's

video

Wireless experiment - angle

Place for Speaker's video (5cm x 3.5cm)

© 2021 IEEE International Solid-State Circuits Conference

Place for Speaker's video (5cm x 3.5cm)

Comparison to prior art

	[1]	[2]	[3]	[4]	This work	
					Fully-Reflective	MIMO
Technology (nm)	65	NA	NA	65	65	
Scheme	Backscatter	Backscatter	SSB WiFi Backscatter	SSB Partially Absorbing WiFi Backscatter	SSB Fully Reflective WiFi Backscatter	SSB Passive Retro- Reflective MIMO WiFi Backscatter
Frequency (GHz)	5.8	2.4	2.4	2.4	2.4	
Incident signal source	Tone Transmitter	Tone Transmitter	WiFi	WiFi	WiFi	
Wake-up power (µW)	8.2	18 (COTS)	NA	2.8	4.5	
Backscatter communication power (µW)	113	59.2**	33**	28	32	38
Range: equidistance TX and RX (m)	0.1	4.6	6	10.5	13	>23

*Simulated

Outline

- Motivation
- Prior-art and proposed SSB QPSK backscatter with retroreflective MIMO array and non-absorbing termination
- Proposed fully-WiFi-compliant backscatter
- Circuit implementation
- Measurement results
- Conclusion

Conclusion

- The first IC demonstrating WiFi-compatible passive MIMO backscatter communication to cover >1600 m² area towards pragmatic adoption in home and office environment
- A fully-reflective backscatter communication with ~13 m communication range for device-area-restricted applications
- Low power: A 4.5µW standby power, 32µW for fully reflective and 38µW for passive MIMO
- Acknowledgement: This work was supported in part by the National Science Foundation (NSF) under Grant No. 1923902.