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Abstract—In this work, we report on progress in building a ma-
chine learning (ML) algorithm to blindly infer the signal modality
of anomalous wireless signals. The system built is designed to be
robust to hardware impairments like carrier frequency offset
(CFO), sample frequency offset (SFO), wireless channel, sample
rate changes due to radio resampling etc. The main novelty of our
work is the exploration of metric learning methods for the task
of blind modality/modulation classification using cyclostationary
features. We describe how the ML approach evolved, with an
empirical illustration of improvement in classification accuracy.

I. INTRODUCTION

The emergence of highly affordable software-defined radios
(SDRs) [1], [2], [3] combined with the softwarization of com-
munication protocols has simplified the process of constructing
bespoke communication networks [4]. These networks could
potentially serve in exfiltrating confidential information from
secured environments, such as private residences or govern-
mental facilities. Furthermore, they could be employed to
covertly surveil individuals, utilizing devices like cameras, mi-
crophones, and modems [5], [6]. Additionally, they enable the
establishment of clandestine and unauthorized communication
channels, posing a substantial risk to privacy and security.
Identifying and characterizing non-protocol compliant wireless
transmissions, (christened as RF anomalies in this paper),
is a challenging task, because the spectral environment in
which these transmissions exist is extremely busy with other
standard protocol-compliant transmissions. From a practical
perspective, this problem of anomalous signal characterization
is important to solve for diverse spectrum sensing applications.
Due to non-standard compliance we cannot use traditional
decoders, to detect such RF anomalies.

In addition to non-compliant signals, anomalies can also
be generated in a much more innocuous manner than just
varying the signal parameters. Altered signals, for example,
are protocol-compliant signals that can be decoded by stan-
dard decoders, but convey extra information by additional
modifications to the signal modulation (for example, see [7]).
Such transmissions can be used for covert communication and
are even more difficult to intercept by conventional means,
and a robust blind signal characterization system such as the
one developed here, will be highly useful to intercept such
transmissions.

To effectively identify such RF anomalies, we need to
characterize all the emissions in the spectrum. To detect
such threats, we can use SDRs to continuously scan the
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spectrum and we must first detect and isolate them in time
and frequency, following which a characterization system
can be applied to them to detect non-protocol compliance.
For spectrum sensing scenarios when precise time-frequency
boundaries of the signals are unknown, signal detection and
isolation serve as a crucial pre-processing step. We apply a
recently proposed detection system, Searchlight [8], which
is a robust detector specifically designed for blind spectrum
sensing scenarios. It is important to note that [8] is a signal
detection system, and does not perform characterization to
know if a signal is an anomaly, and therefore, is used as a
pre-processing step in our work. We depict the overall flow
of the classification architecture as designed in this paper in
Figure 7
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Fig. 1. Workflow of the modality neural network architecture in conjunction
with capturing IQ samples and pre-processing with the energy detector

We develop techniques to build a machine learning (ML)
model that can classify signal modality. Modality, for the
purposes of this paper, is the primary information transport
method in the signal, and can be one of the following three
possible labels, namely,

o spread spectrum

o multi carrier

« single carrier

II. BACKGROUND AND MOTIVATION
A. Prior Work

Automatic Modulation Recognition, using deep learning
architectures, has a fairly large literature. See [9], [10], [11],
[12] and references therein for previous attempts. In this



section, we present a comparison of our work with the previous
literature.

In [9], [10], simple convolutional neural network architec-
tures were used to perform ML-based signal characterization
on data drawn from the RadioML dataset. This dataset is
completely simulated, in the sense that noise and channel
effects are synthetic. In addition, there is no pre-processing
step similar to searchlight, that we are using in our work.
In [11], a transformer-based architecture was used for auto-
matic modulation recognition, using the RadioML dataset for
training. Further, the features used were simple transforma-
tions of the input 1Q samples. The lack of cyclostationary
input features (see [13], [14], [15], [16] for more details)
means that this approach will not be robust against sampling
rate changes induced by the energy detection preprocessing
step. In [12], metric learning-based losses were explored for
modulation recognition, but this approach is again plagued by
non-robustness due to the absence of cyclostationary features.
In summary, while the problem of signal characterization has
been attempted in the literature before using methods that have
some overlap with the approaches of this paper, three things,
in our view, complicate the exact problem we are trying to
solve in this work, namely

o The signals we are concerned with have anomalous
parameters, so that protocol alone would not be sufficient
to characterize them.

o The classification is completely blind: we are presented
merely with an IQ collect from an arbitrary band, with no
other prior information, except for the received sampling
rate.

o The energy detection pre-processing outputs 1Q samples
at sample rates that are different from one signal to the
next.

It further needs to be stressed that, to the best of our knowl-
edge, there exists no classification algorithm in the literature
that attempts to infer modality/modulation completely blindly.
We have also chosen the input features are chosen to be
robust against sampling rate changes due to the detection pre-
processing step. As far as the novelty of the classification
architecture is concerned, while transformer neural networks,
and metric learning methods have been used in the past for
modulation recognition, (see [11] and [12] respectively), the
current system makes use of the spectral correlation function
(SCF) [14] that will be estimated exhaustively using the Strip
Spectral Correlation Analyzer (SSCA) algorithm, (see [15] for
an introduction). This needs to be contrasted with the previous
approaches which used the raw 1Q as input features.

B. Primer on Cyclostationarity and Feature Computation

The SSCA output estimates the SCF at discrete points in the
bifrequency (f,«) plane. The definition of the SCF is given
as
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Here, X1,a¢(t, f) represents the spectral content of the signal
z(t) in a passband centered at f with bandwidth Af and is
called the complex demodulate of x(t). More precisely,
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Communications  signals with  well-defined modula-

tion/modality exhibit peaks at characteristic cycle frequencies
«. While the precise location of these peaks depends on
external factors too, (e.g., if the channel effects are bad, some
of the peaks may disappear), it is empirically observed that
the pattern of peaks is more or less common across signals
of the same modality. To estimate the SCF, we use the SSCA
algorithm, whose computation proceeds as follows. Suppose
that an analog signal z(t) is sampled at a rate Fy, giving
a discrete sequence x[n]. If we look at the discrete Fourier
transform of the sampled signal, it is immediately clear that
the sampled version has frequency components going from
—F,/2 to F,/2. Since the SSCA acts on discretely sampled
signals, it is clear from Eq.(1), that the resulting estimated
SCF occurs at points (f,a) such that
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The SSCA algorithm proceeds in the following fashion. We
first fix two integers N, N, such that the length L of the
data record whose SCF needs to be determined satisfies (with
padding if necessary) L = N + N,,. The larger number N is
related to the resolution of the analyzer in the a-direction as
Ao = % The smaller number N, is related to the resolution
in the f-direction as Af = ﬁp .

o The complex demodulate of z[n] is estimated as
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Here, f), are the centered FFT frequencies of an N,
point FFT. The window a(r) is a data-tapering window
of length N,.
o Next, consider g(n), another data-tapering window of
length N. One forms the quantity
N-1
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Here, f; are the centered FFT frequencies of an N
point FFT. This matrix S(f;, fx) has dimensions NV x IV,
and represents the SCF estimates evaluated in a rotated
coordinate system in the (f, «) plane.
o The mapping between (f, fx) and (f, «) is given by

a=fi+fi f=05(fu—1f) ©)



III. OUR SOLUTION

To reiterate the problem statement, we are presented with
IQ samples that represent the output of the energy detector.
The problem is to assign modality classification labels to these
samples. The only information that is presented is the sampling
rate of the samples.

A. Searchlight Processing

The searchlight system chunks the input, then convolves
the input channogram with boxes of various sizes. A sepa-
rate noise floor is estimated for each chunk and an energy
detection is run on each convolution output. This results in
time frequency bounds where a non-trivial signal is present.
The complex samples corresponding to these bounds are
synthesized (using the polyphase channelizer).

B. Imperfections introduced by searchlight

Searchlight does not perform perfect centering of the de-
tected energies in the region of interest. Further, the occupied
bandwidth of the energy will be much smaller than 50% of
the size of the energy box. To mitigate these problems,

o We choose to center the energy by applying an appropri-

ate phase offset.

o We increase the occupied bandwidth by performing a
resampling operation (this won’t result in any aliasing
in the cases where we do this).

We observe that the neural network training is much more

stable when these operations are done.

C. System Design

The CUDA implementation of the SSCA computation fol-
lows the algorithm given in [16]. Since many signals of
interest in the dataset have information modulated in their
instantaneous frequency, phase, as well as amplitude, and
also in how the phase changes between the samples, the
following are the six candidate features that we can compute
for characterizing a signal :

o SCF estimate using the SSCA,

o Conjugate SCF using the SSCA,

o SSCA of the phase of the input,

o SSCA of the samplewise phase difference of the input,

e SSCA of the absolute value, and

o STFT of the input.

Some representative examples of features are given in Fig. 2.
In a later section, we show evaluations to justify our choice
of features.

D. Evaluation plan summary

We want to converge to an optimal (in some sense) neural
network architecture that provides the best result on testing
datasets that are completely different (in terms of signal
parameters) from the training set (we call such a dataset an
unseen dataset). The optimal network would then be a neural
network whose performance does not degrade appreciably
when evaluated on unseen datasets. We start with a bare-
bones initial baseline model, and study the effects of various
modifications to this.

Non-conjugate SSCA Feature Conjugate SSCA Feature

0.4

0.2

-0.4-0.2 0 0.2 04 -0.4-0.2 0 0.2 04

Q Q
Non-conjugate 1D Feature Conjugate 1-D Feature
0.05 0.014
0.012
0.04
0.01
3 3
0.03
2 2 0.008
) E}
@ 0.02 @ 0-006
= =
0.004
0.01
0.002
0 0
-1 0 1 -1 0 1

Normalized Cycle Frequency Normalized Cycle Frequency

Fig. 2. Example SSCA estimated features for a single spread spectrum 16-
QAM signal. The figures on the second row are the one dimensional reductions
of the corresponding features in the first row.

E. Baseline Model description

Our baseline model is composed of components that are
standard in the ML image classification literature, and consist
of simple convolutional networks of various sizes. The input
to the neural network consisted of a single SSCA output,
evaluated with N = 256, N, = 32. If the testing set signal
parameters were very dissimilar to the ones used in the training
set, we get the performance given in Figure 3. This shows the
following

e The values of NV and NV, are not large enough to capture

all the cyclostationary signatures of the input signal.

o The neural network architecture needs to be sufficiently

complex for the problem.

e Only one SSCA feature is insufficient to perform classi-

fication to the accuracy we desire.

F. Transformer architecture

The peaks in the 2d image shown in Fig. 2 exhibit a
pattern that is similar for signals of the same modality. We
needed some way to make a neural network learn not only
the position of peaks in the SSCA image but the context in
which they occurred. In machine learning, more specifically
machine translation, the problem of translating text from one
language to another is an important one. Here, not only is the
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Fig. 3. Baseline Modality Neural network performance on testing set very
dissimilar to training set. Single SSCA feature was used as input to a
simple CNN. MC=Multi Carrier, SC=Single Carrier, U=Unknown, SS=Spread
Spectrum

position of each word in the input and target important but
also the context in which the word occurs. Recent progress
in machine learning in finding effective ways of capturing
information about this context showed that the so-called at-
tention mechanism is important for this purpose. An example
neural network that automatically implements the attention
mechanism is the transformer. To test the viability of this
architecture for modality classification, we trained this on data
processed with the perfect energy detector, and tested it on a
dataset that had parameters that were very different compared
to the training set. We used the following three features as
input to the transformer,

¢ SSCA of input
o conjugate SSCA of input
o STFT of input

and we were able to get good performance. To stress the per-
formance of the transformer architecture, emanations instances
were included, which are signals collected from unintended
transmissions from devices like keyboard, mouse, monitor etc.
We tried training and testing the modality neural network to
see how it handled this new class. The result is shown in Figure
4. The problem that we are seeing here is that te inclusion
of the emanations class has destabilized the behavior of the
system for the same input features. The possible reasons for
this could be

o Many overt signal modulations have features difficult to
distinguish from emanations.

o The three features used here are insufficient to separate
the new class from the old ones.
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Fig. 4. Transformer Neural network performance on the testing set very
dissimilar to the training set. All energies have been passed through the
perfect energy detector. Three input features have been computed : SSCA,
conjugate SSCA and STFT, with emanations. E=Emanations, MC=Multi
Carrier, SC=Single Carrier, U=Unknown, SS=Spread Spectrum

G. Feature Engineering and Loss design

The first problem raised in the previous section, is solved
by including metric learning losses as part of the training pro-
cedure to incentivize the network to discriminate neighboring
classes. To solve the second problem, we decided to include all
possible six features as input. The soft triplet loss incentivizes
neural networks to learn efficient embeddings of input features
so that samples of the same class in the training set are closer
than samples of different classes. The simplest way to ensure
that the condition above holds is to perform the following
steps:

o Define a generalized distance between two points x and
y as
d(x,y) =x"My ™)

¢ During each epoch, minimize the distance defined in
Equation 7 between points in each triplet that belong to
the same class, and maximize the distance between points
in each triplet that belong to different classes. This gives
an update rule for the matrix entries of M after each
epoch.

Some additional optimizations need to be introduced in this
process. To ensure a fast way of comparing points to determine
their distance one assigns centers wf, for each class. The index
1 labels the class, and the index k labels the center in class 4.
Then, the similarity of a point x with class j is defined to be

Sx,j = maxkxwa (8)

One can then show that the optimization carried out in the
third point above is equivalent to minimising the following



loss
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We evaluated the performance of the neural network that

resulted in Figure 4 with the same training and test sets, with
two major differences:

« triplet loss was included in the training as discussed above

o all six features are used as input to the transformer.
When these conditions were satisfied, we get the performance
recorded in Figure 5.
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Fig. 5. Transformer Neural network performance on testing set very dissimilar
to training set with triplet loss included in training. All energies have been
passed through the perfect energy detector. E=EEmanations, MC=Multi Carrier,
SC=Single Carrier, U=Unknown, SS=Spread Spectrum

IV. DATASET GENERATION AND PRE-PROCESSING

The accurate evaluation of RF ML algorithms heavily relies
on the availability of representative datasets. To train and test
our algorithms, the following are the key steps we took in
order to ensure this:

A. Signal diversity

Each modality can have multiple possible modulations
within it. For example, a Phase Shift Keying (PSK) signal can
be transmitted as a single carrier, spread spectrum, or multi-
carrier signal. A large number of commonly used modulations
were hence considered for each modality, which are listed in
Table I below.

TABLE I
MODULATION SCHEMES COVERED IN THE GENERATED DATASETS

PSK, QAM, FSK, CPFSK, GFSK,
MSK, GMSK, AM, FM, ASK, APSK
PSK, QAM, FSK, GFSK, MSK, GMSK
OFDM PSK, OFDM QAM

Single Carrier

Spread Spectrum
Multi carrier

B. Data diversity

ML algorithms often suffer from the problem of domain
gap, and hence in order to address this we ensure we use
different kinds of data - simulated as well as over-the-air for
training and testing. Four kinds of data were generated:

1) Simulated data + perfect energy detector
2) Simulated data + realistic energy detector
3) OTA data + perfect energy detector
4) OTA data + realistic energy detector

At first, raw, noiseless I/Q samples are generated for each
modulation in MATLAB. These are resampled to 100 Msps.
After this, to generate the simulated datasets, synthetic noise,
channel effects and other RF imperfections (Carrier Frequency
Offset, DC Offset) are applied to this raw data. For the OTA
data, the noiseless I/Q samples are transmitted and collected
using USRP N320s. Hence, each noiseless 1/Q file will have
a simulated and OTA copy. Following this, the two kinds
of energy detectors as described above are applied. Figure 6
showcases this full workflow.
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Fig. 6. Data generation and pre-processing workflow

C. Wide parameter sweeps

In order to prevent overfitting of the model to any par-
ticular kind of data, the datasets have wide sweeps over all
possible tunable parameters such as symbol rate, sample rate,
pulse shaping, SNR, samples per symbol etc., along with
modulation-specific parameters such as chip rate, bandwidth-
time product, frequency deviation etc.

D. Class balance

To ensure an unbiased evaluation of classification algo-
rithms, it is essential to maintain class balance in the generated
datasets. Hence, an equal number of files were generated for
each modulation and modality in all the datasets.

V. FINAL RESULTS AND DISCUSSION

In conclusion, we have the following as the flow chart for
the neural network classification architecture.
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Fig. 7. Flow Diagram for the modality classification architecture

The final neural network architecture was tested in the
UCSD lab environment. Signals of various modalities and
modulations were transmitted over the air, processed through
the Searchlight energy detector, and the I1Q samples of the
detected energies were given as inputs to the signal char-
acterization block that we have been building. The training
dataset was also a set transmitted over the air in a similar
fashion, but the signal parameters of the training and test sets
were different. When passed through this block, we get the
confusion matrix as depicted in Figure 8.
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Fig. 8. Modality classification performance on data captured in UCSD lab
environment. All six features were used as input, and triplet loss was included
in training. MC=Multi Carrier, SC=Single Carrier, SS=Spread Spectrum

Note that this translates to an overall accuracy of =~ 85%
on unseen datasets, and the final performance can be seen in
Figure 8. This indicates that there is good separation between
the classes, and also shows that this separation is largely insen-

sitive to the sample rate of the output of the energy detector.
The triplet loss network maps input features to a latent space.
A two-dimensional reduction of these latent space vectors
for each class can be seen in Figure 9. This shows a clean
separation of the classes, and this behavior persists even across
all modulations for a particular modality and across all SNRs.
This also indicates that at some level, modality/modulation
recognition is well adapted to geometrical approaches, even
with channel effects and other imperfections.

» single_carrier
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Fig. 9. Embedding diagram created by triplet loss training for the dataset
on which the neural network has performance given in Figure 8. Each point
here represents an energy of specific ENR and Modulation and is a two-
dimensional reduction of a 100 dimensional vector. The x and y coordinates
do not have any meaning.

VI. CONCLUSION

This work demonstrates a machine learning-based system
that is capable of blind signal characterization. After the
signals have been detected in arbitrary bands, their IQ is
collected and analyzed by the neural network to output the
modality labels of the signal under consideration. This system
has shown to be insensitive to sample rate variations, as well
as CFO imperfections introduced by the detector.
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