RIGHTS

FreeRider: Backscatter Communication Using
Commodity Radios

Pengyu Zhang', Colleen Josephson!, Dinesh Bharadia?, Sachin Katti'

Stanford University!, UCSD?
{pyzhang,skatti}@cs.stanford.edu,cajoseph@stanford.edu,dineshb@ucsd.edu

ABSTRACT

We introduce the design and implementation of FreeRider,
the first system that enables backscatter communication with
multiple commodity radios, such as 802.11g/n WiFi, ZigBee,
and Bluetooth, while these radios are simultaneously used
for productive data communication. Furthermore, we are,
to our knowledge, the first to implement and evaluate a
multi-tag system. The key technique used by FreeRider is
codeword translation, where a tag can transform a codeword
present in the original excitation signal into another valid
codeword from the same codebook during backscattering.
In other words, the backscattered signal is still a valid WiFi,
ZigBee, or Bluetooth signal. Therefore, commodity radios de-
code the backscattered signal and extract the tag’s embedded
information. More importantly, FreeRider does codeword
translation regardless of the data transmitted by these radios.
Therefore, these radios can still do productive data commu-
nication. FreeRider accomplishes codeword translation by
modifying one or more of the three dimensions of a wireless
signal — amplitude, phase and frequency. A tag ensures that
the modified signal is still comprised of valid codewords that
come the same codebook as the original excitation signal. We
built a hardware prototype of FreeRider, and our empirical
evaluations show a data rate of ~60kbps in single tag mode,
15kbps in multi-tag mode, and a backscatter communication
distance up to 42m when operating on 802.11g/n WiFi.

CCS CONCEPTS

« Networks — Network architectures; Wireless access
networks;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

CoNEXT 17, Incheon, Republic of Korea

© 2017 ACM. 978-1-4503-5422-6/17/12...$15.00

DOI: 10.1145/3143361.3143374

i,

389

KEYWORDS
Backscatter; WiFi; ZigBee; Bluetooth; Wireless

1 INTRODUCTION

Backscatter communication is well-known for providing an
ultra-low power wireless link for connecting Internet-of-
Things devices. Backscatter radios only consume microwatts
of power during data transmission because they passively
reflect and modify wireless signals to embed information
instead of doing active transmission like WiFi. Typically
there are three components in a backscatter communica-
tion system: an excitation signal generator, a backscatter
device (tag), and a receiver. RFID is a popular example of
backscatter. In RFID, the reader acts as both the excitation
signal generator and the receiver. This requires a dedicated
infrastructure of expensive custom hardware (such as RFID
readers). Hence, despite their power efficiency, we actually
do not see a wide deployment of backscatter-based systems.
As a result, researchers have recently been exploring us-
ing already-deployed commodity radios, such as WiFi and
Bluetooth, to act as the excitation radio and/or receiver.
There are a number of research projects along these lines.
Passive WiFi [16] is a pioneer which enables a tag to talk
to an 802.11b WiFi receiver. A special tag transforms a sine
wave signal to an 802.11b signal during backscattering. There-
fore, the backscattered signal can be decoded by a commodity
802.11b WiFi receiver. One inconvenience of using [16] is that
you have to buy dedicated hardware which emits the sine
wave signal. A followup work, Interscatter [13], addresses
this problem by hacking Bluetooth on a smartwatch. [13]
forces the Bluetooth radio to transmit a specific sequence of
data bits such that the signal that is emitted is a sine wave.
[13] made a significant step toward using commodity radios
for backscatter. However, the channel occupied by Bluetooth
cannot be used for productive data communication because
the Bluetooth radio itself is generating the excitation signal
with no data (e.g., all zeros). This is non-productive com-
munication. In summary, most recent research emulates
the excitation signal either with a tone generator or commod-
ity hardware with non productive communication [13, 16].

RIGHTS

CoNEXT *17, December 12-15, 2017, Incheon, Republic of Korea

excmng signal

exciting radio

receiver 1
(Co))
(@) aVaVaVvaVy (l) ______ "
exciting signal v decoder a9 data

. ® 010111..
S —— R | V¢ Tk >

tag data 010111.. R
receiver 2

Figure 1: FreeRider system overview. An example sce-
nario could be office setting where our smart-phone
can act as exciting radio, and the WiFi APs as receiver
1 and receiver 2. The WiFi APs are connected by Ether-
net backhaul which performs the decoding operation
and sends tag data to the Internet.

The ISM band is crowded with numerous devices; deploying
backscatter systems that rely on non-productive communica-
tion results in decreased data rates and increased congestion
for wireless connectivity. Ideally, we would like the excita-
tion signal transmitter to communicate productively with
normal non-backscatter clients while simultaneously provid-
ing a signal that tags can backscatter.

To this end, a recent work HitchHike [25] enables backscat-
ter communication using commodity 802.11b WiFi radios
while the 802.11b radio itself does productive communication.
However, [25] only works with 802.11b WiFi. Most modern
WiFi clients use 802.11g/n where OFDM signals are transmit-
ted. This means HitchHike devices will see little WiFi traffic
they can use to backscatter. Therefore, there is a strong need
to design a system that can do backscatter communication
with widely deployed commodity radios (such as 802.11g/n
WiFi, Bluetooth, and ZigBee) while these radios continue
communicating normally with their intended clients. Since a
specific type of radio wave might not be available or has bad
signal quality at one particular location, the technique we in-
vent should be general enough such that the tag can rely on
multiple types of radios for backscattering its information.

This paper presents the design and implementation of
FreeRider, the first system that enables backscatter commu-
nication using commodity 802.11g/n WiFi, Bluetooth, and
ZigBee radios while these radios themselves are doing pro-
ductive communication. Furthermore, we are the first, to our
knowledge, to implement and evaluate a multi-tag system
that works with commodity radios.

We overcome two key challenges in designing FreeRider.
The first challenge is designing a system that can do backscat-
ter communication with various commodity radios while
they are still performing productive communication. To ad-
dress this, we use a technique called codeword translation
that originated in HitchHike [25] (which only works with
802.11b WiFi), and extend the technique such that it works
with OFDM and other various commodity radios. The key
observation here is that any wireless signal on the ISM band

i,

390

P. Zhang!, C. Josephson!, D. Bharadia?, S. Katti'

is generated using a set of known codewords from a fixed
codebook. For example, Bluetooth uses FSK modulation and
has two codewords in its codebook: it transmits a tone at
one frequency to send data one, and a different frequency to
send zero. Similarly, WiFi and ZigBee also have finite sets
of codewords that vary in combinations of phase, amplitude
or frequency. To do codeword translation, a tag transforms
the ongoing excitation signal’s codeword into another valid
codeword in the same codebook during backscattering. This
is done by modifying one or more of the amplitude, phase,
and frequency of the excitation signal. The specific transla-
tion depends on the data that the tag wants to communicate
and the type of the excitation signal. Because the codeword
in the backscattered signal is a valid codeword from the
same codebook as the original excitation signal, we can use
a commodity radio to receive the backscattered signal. Fig-
ure 1 shows an overview of FreeRider. An existing ISM band
radio (WiFi, Bluetooth or ZigBee) transmits data to clients
as it normally would. The IoT device (which we will refer
to as a tag to be consistent with prior backscatter litera-
ture) backscatters this signal and embeds the information it
wants to communicate. The backscattered signal arrives at
a commodity receiver that uses the same technology (WiFi,
Bluetooth or ZigBee) as the transmitting radio, but sits on an
adjacent channel. The intended client of the original commu-
nication decodes the original signal, and the second receiver
decodes the backscattered signal. The decoded bits streams
from the two receivers are compared to obtain the tag data.

The second challenge is gracefully supporting multiple
tags on the same wireless channel. FreeRider addresses this
issue by leveraging a technique called packet length mod-
ulation to transmit necessary information to the tags for
coordination. Its core idea is using the length of the excita-
tion packets to encode 0s and 1s, which can be arranged to
form messages to the tags that implement a backscatter MAC
protocol. This protocol sends control messages to the tags
that coordinate tag transmissions to avoid collisions.

We prototyped our FreeRider tag, and used a MacBook Pro
laptop as the backscatter decoder. Our empirical evaluation
shows the following results:

e We can decode backscattered OFDM WiFi signals
from 42m in a line-of-sight (LOS) deployment, and
22m in a non-line-of-sight (NLOS) deployment.

e We achieve a maximum throughput of ~60kbps from
a backscattered OFDM WiFi signal when a LOS re-
ceiver is 18m or closer. For further distances, we
achieve an average of 32kbps (LOS) and 20kbps (NLOS).

e We demonstrate that our FreeRider tag can backscat-
ter ZigBee signals from up to 22m, achieving 15kbps.
It can backscatter Bluetooth up to 12m, achieving

RIGHTS

FreeRider: Backscatter Using Commodity Radios

55kbps. We also show that our system co-exists peace-
fully with WiFi networks no matter what type of
excitation signal the tag is backscattering,.

We evaluate FreeRider’s performance with up to
twenty tags and show that our MAC scheme can
communicate successfully with each of the twenty
tags and ensure uplink fairness among them.

2 DESIGN
2.1 Understanding backscattered signals

When a tag backscatters an excitation signal, modifies the
three degrees of freedom of a signal: amplitude, phase, and
frequency. Such modification is shown below where S(t) is
the excitation signal, T(t) is the tag signal, and B(t) is the
backscattered signal. The backscattered signal B(t) is the time
domain product between the excitation signal S(t) and the tag
signal T(t). Therefore, a tag changes its signal T(t) to modify
the amplitude, phase, and frequency of the backscattered
signal B(t).
S(t) — Asej(anstJrHS)

T(t) = Atej(zﬂsz@:)
B(t) = S(t)T(¢)
— Asej(fosz@s)Atej(Zﬂfzt+9r)

= AA, f Tt H0:+0,)

A tag modifies the amplitude of the backscattered sig-
nal by tuning the terminating impedance of the tag an-
tenna. The backscattered signal strength is a function of
r= % where Z4 is the tag antenna impedance and Zr
is the impedance across tag antenna terminals. The exact
formulation between the backscattered signal strength and
I can be found in [21]. In traditional backscatter systems,
a tag switches between Zr, = Z4 and Z7, = 0 to encode
information. Therefore, we observe two levels of amplitude
on a backscattered signal. Instead of switching between two
impedances, as [21] does for creating the analog backscatter
signal, our tag switches across multiple impedances to fine
tune the amplitude of the backscattered signal.

A tag changes the phase of the backscattered signal by
delaying the tag signal in the time domain. In order to intro-
duce an additional phase offset A at the tag, we delay the
tag signal by %. Such A6 phase offset introduced at the
tag leads to a A6 phase offset on the backscattered signal.
Changing the frequency of the backscattered signal is even
simpler. The tag just changes the frequency of toggling its
RF transistor. Therefore, a tag is able to modify the ampli-
tude, phase, and frequency of the backscattered signal by
changing the tag signal. We next explain how a tag leverages
this ability to enable backscatter communication between
commodity radios.

i,

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

391

decoded codeword | excitation signal codeword | tag bits
Cy Cy 1
Cy Cy 1
Cy Cy 0
Cy Cy 0

Table 1: Logic table between the backscatter signal
codeword, excitation signal codeword, and tag data
bits.

2.2 Codeword translation

The key technique for backscatter communication between
a tag and commodity radios is codeword translation. In this
section, we describe what codeword translation is and how
a tag does it.

2.2.1 Codeword translation overview. We first define
two key concepts in our system — codewords and code-
books. A codeword C; is a signal symbol on the physical
layer that represents specific data transmitted. For example,
Bluetooth uses binary FSK modulation to embed informa-
tion. Therefore, it only uses two codewords, C; = e/27fi* and
Cy = e/?7F2t to represent data one and data zero respectively.
A codebook B is the set of valid codewords used by a radio.
The codebook of Bluetooth is B = {Cy, C,} because only two
codewords are used. Similarly, 802.11g/n WiFi uses a code-
book B = {Cy, C, ..., Cy, } where C; is an OFDM symbol. WiFi,
ZigBee and Bluetooth all use different sets of codewords and
codebooks.

Our key observation is that different codewords in the
same codebook are related to each other by shifts in phase,
amplitude, frequency or a combination of them. For example,
the codeword C; used by Bluetooth only differs from C; in
the frequency domain, where a frequency difference f, — f;
is observed.

Codeword translation is transforming a valid codeword C;
to another valid codeword C; where both codewords belong
to the same codebook, meaning C; € B and C; € B. If such
a transformation can be done by a backscatter tag in a low
power fashion, then we are able to leverage WiFi, ZigBee, and
Bluetooth signals for backscatter. Because the transformed
codeword is still a valid codeword in the same codebook, a
commodity WiFi, ZigBee, or Bluetooth radio can be used to
decode the backscatter signal. The tag data is encoded by the
specific codeword translations described below:

An simple example codeword translation protocol is tag
summarized by Equation 2, where the codeword of the exci-
tation signal is C;. To encode data one, the tag translates the
excitation codeword C; to C; before reflection. To encode
data zero, the tag leaves the codeword untranslated, which
means the backscatter signal has the same codeword as the
exciting signal.

Cj Tag data one

i Tag data zero

(2)

backscatter codeword = {

RIGHTS

CoNEXT *17, December 12-15, 2017, Incheon, Republic of Korea

QA QA
1000

& & , ¢ & & &

1101, 0101
¢ & & & ¢ 6|6

¢ & & & ¢ &6 &'

¢ & & & ¢ & & &
Subcarrier i Subcarrier m

Figure 2: Invalid codewords created by amplitude mod-
ification on an OFDM signal.

By using codeword translation, we can decode the backscat-
ter signal using commodity WiFi, ZigBee, or Bluetooth radios
to extract the tag data. Table 1 shows the logic table for de-
coding a backscatter signal. We see that in this case the tag
bits are the XOR of the backscattered codeword and the orig-
inal codeword. Therefore, we can extract the tag data simply
by computing the XOR of the original excitation bit-stream
and the backscatter bit-stream. More complicated schemes
yielding faster data rates are described in later sections.

2.22 How the tag does codeword translation. As we
described before, a tag does the codeword translation by mod-
ifying the amplitude, phase, or frequency of the excitation
signal. Such modification transforms the excitation code-
word from C; to C; in the backscattered signal. When a tag
does codeword translation it is frequency agnostic, mean-
ing that the tag will apply the same modification on signals
across all frequencies. This is not a problem for a signal that
uses a single carrier wave, such as Bluetooth, ZigBee, and
802.11b WiFi. However, introduces issues in 802.11n WiFi
because the OFDM signal used by 802.11n has multiple sub-
carriers. When a tag changes the amplitude of a signal on
subcarrier i, it will introduce the same amplitude modifica-
tion on another subcarrier m. However, the modified signal
on subcarrier m might not be a valid codeword. An example
of this is shown in Figure 2 where the data modulated on
subcarrier i is 1000 while the data modulated on subcarrier
m is 0101. When the tag transforms the signal on subcarrier
i from 1000 to 1101 by reducing the signal amplitude, the
tag applies the same operation on subcarrier m, reducing
the strength of the signal that represents 0101. As a result,
the tag creates an invalid codeword on subcarrier m. There-
fore, when a tag does codeword translation, it has to look
for a dimension (either amplitude, phase, or frequency) to
do the signal modification such that the modified signal still
has a valid codeword. We next explain how to do codeword
translation for WiFi, Bluetooth, and ZigBee radios.

2.3 Backscatter with commodity radios

2.3.1 Backscatter with OFDM WiFi. Equation 3 shows
the mathematical formulation of an OFDM modulated signal
where {X;} are the data symbols modulated on subcarriers,

Ay

392

P. Zhang!, C. Josephson!, D. Bharadia?, S. Katti'

N is the number of sub-carriers, and T is the OFDM symbol
time. For 802.11g/n WiFi, an OFDM symbol lasts for 4us and
contains 64 subcarriers. The data symbols {X}} are gener-
ated using BPSK, QPSK, 16-QAM, or 64-QAM modulation
depending on the WiFi bit rate.

N-1
2rkt

S(t) = Z Xpe T
k=0

When backscattering with OFDM WiFi, a tag cannot mod-
ify the amplitude or frequency of the excitation OFDM signal
because such modification creates an invalid codeword in
the backscattered signal. Therefore, the tag modifies only the
phase of the backscattered signal. A binary example is shown
in equation 4. The tag introduces phase offset Af to transmit
data one. It introduces no offset to transmit data zero. The
value of A@ depends on the tag bit rate. For example, if the
tag transmits at lower data rate, it uses the binary scheme
where Af is 180°. If the tag wants to transmit at higher data
rate, it can choose A8 as 90° and use equation 5 to encode
its information.

3)

S(t)e’® Tag data 0
B(t) = . 4
® {S(t)efM Tag data 1 @)
S(t)el® Tag data 00
B(t) = S(t)e/™? Tag data 01 o)
| S(1)e/2A? Tag data 10
S(t)e’*2? Tag data 11

2.3.2 Backscatter with ZigBee. We now describe how
a tag does backscatter communication with ZigBee radios.
ZigBee radios use Offset QPSK (OQPSK) modulation. Similar
to QPSK modulation, data is encoded in the phase of the
transmitted signal. Therefore, a tag embeds data in an OQPSK
signal by modifying the phase during reflection. When the
tag transmits data one, it introduces a A9 phase offset on the
reflected signal. When the tag transmits data zero, it does
not change the phase. Note that the formula for embedding
tag bits in ZigBee is the same for an 802.11g/n WiFi signal
(equation 4 or equation 5 depending on the tag bit rate).

2.3.3 Backscatter with Bluetooth. We now discuss how
to backscatter with Bluetooth. A Bluetooth radio modulates
information by changing the carrier signal frequency be-
tween f; and f; depending on the codeword transmitted.
When the radio transmits data one, it sends a sine wave with
frequency fi. When transmitting data zero, it sends a sine
wave with frequency fo.

A FreeRider tag uses the formula shown below to embed
its information. When transmitting data one, it produces an
additional frequency offset A f in the backscattered signal by
toggling its RF transistor at frequency A f. When transmit-
ting data zero, it does not produce the additional frequency

RIGHTS

FreeRider: Backscatter Using Commodity Radios

offset. If we select A f carefully, we can ensure that B(t) is still
a valid Bluetooth signal and can be decoded by a commercial
Bluetooth radio.

S(t)ej(zﬂAft)
5(t)

One possible Af is | fi — fo|. Let the Bluetooth radio trans-
mit data one with frequency fi. For the tag to transmit data
one, it shifts the signal by A f so the backscattered codeword
becomes e/(?7fot*05) This is still a valid Bluetooth FSK code-
word because it is a sine wave with frequency f;. However,
a commercial Bluetooth radio will decode it as zero rather
than one. Conversely, to encode a data zero the tag does not
frequency-shift the Bluetooth signal. The case is symmetric
when the Bluetooth radio transmits data zero with frequency
fo instead. In summary, to transmit data one a FreeRider tag
transforms a Bluetooth codeword with frequency fi/f; to
a backscattered codeword with frequency fy/fi. To trans-
mit data zero, the tag produces a backscattered codeword
with the same frequency as the original Bluetooth codeword.
Therefore, by choosing A f properly, a FreeRider tag can pro-
duce a backscattered signal that is a valid Bluetooth signal
while still embedding its information.

B(t) = S(OT(t) = { tag data one

tag data zero

2.3.4 Avoiding interference from active radios. When a tag
reflects the excitation signal to a receiver, the receiver will
see severe interference from the exciting signal because both
the backscattered signal and the exciting signal share the
same channel [27]. To avoid such interference, FreeRider
leverages techniques developed by [27] and [13] where the
backscattered signal is shifted in the frequency domain to
ensure that it occupies a different channel than the exciting
signal. Such frequency shifting can be done by toggling the
RF transistor at the desired frequency offset. For example, if
we want to move the backscattered signal 20MHz away from
the exciting signal, we toggle the RF transistor at 20MHz.

When backscattering a WiFi signal, our tag does the fre-
quency shifting such that the backscattered signal sits on
channel 13, which is the least used channel in the 2.4GHz
ISM band. This reduces interference to and from other ac-
tive radios. When backscattering Bluetooth or ZigBee, tags
backscatter on channels close to 2.48GHz because these chan-
nels experience less interference from WiFi.

2.4 MAC protocol

To facilitate effective sharing of the wireless medium be-
tween multiple tags, a media access (MAC) scheme is needed.
Our MAC protocol serves two purposes: it tells the tag what
signals to backscatter with and allows our system to support
multiple tags. Below we discuss the design in more detail; we
evaluate the performance of the MAC layer in Section 4.5.

24.1 Coordinating tags.

i,

393

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

Determining when to backscatter: If the incorrect sig-
nal is backscattered, data cannot be recovered. The tags need
a way to distinguish when to start backscattering signals. To
do this, the transmitter sends a preamble containing a pre-
determined sequence of 0s and 1s (we describe this further
in Sec. 2.4.2). The tag maintains a circular buffer of received
bits. If the beginning of the buffer matches the preamble, the
tag know the buffer contains a backscatter initiate command
from the transmitter and not random packets.

Communicating with multiple tags: Since a tag does
not have sufficient power to do carrier sensing, we designed
a random access scheme based on Framed Slotted Aloha
where the transmitter acts as a central coordinator, similar to
the one implemented in RFID backscatter systems[7]. Com-
munication is done in rounds with a fixed number of slots
per round. Each round, the tags choose a random slot to
transmit. If two tags choose the same slot, there is a collision
and no data is successfully transmitted. At the end of a round
the transmitter processes data from the tags and adjusts the
number of slots before proceeding to the next round.

Compared to a stochastically-allocated time-division scheme,
random access allows the set of tags to grow and shrink
without a specific association process. The number of slots is
inferred by the receiver from how many packets it receives,
as well as any collisions. The receiver passes this information
to the transmitter. If the transmitter sees many collisions,
it adds slots. It decreases the number of slots if there are
many un-utilized. To avoid collisions from other users on
the same channel, the transmitter uses carrier sensing be-
fore sending messages to the tags. Each round can have an
arbitrary amount of delay before the next. This ensures that
the backscatter system does not hog the channel.

The use of rounds allows for fairness between the backscat-
ter system and other users of the channel. The use of slots
within the backscatter system allows for fairness between
tags. Below we present the low-power transmitter-to-tag
communication system needed to operate our MAC.

2.4.2 Transmitting coordination messages to tags.
One simple solution to enable communication from the trans-
mitter to the tags is using a commodity 802.11 decoder in
each tag. However, the decoder implements complex sig-
nal processing, which is power-intensive. The challenge is
designing a transmitter-to-tag communication system that
is low power, i.e. does not require the tags to decode pack-
ets. Our solution is a low-power overlay scheme that sits
on top of an existing system and can be implemented with
commodity hardware.

Envelope detectors are a low-power component that can
be exploited to implement a transmitter-to-tag communica-
tion system. Low-power envelope detectors consumes less

RIGHTS

CoNEXT *17, December 12-15, 2017, Incheon, Republic of Korea

0.3
0.25
0.2
0.15
0.1
0.05

0 sorndy AL SN i " L
0 0.5 1 1.5 2
Packet Duration (ms)
Figure 3: Durations of 30 million packets on ch. 6 col-

lected in a lecture hall. We see a bimodal distribution
where ~78% of packets last less than 500us and ~18%
last 1500u5-2700us. With a pulse-width error bound
of 255, the probability an ambient packet having the
same length as our pulses is about 0.03%.

0.014
0.012

0.01
0.008
0.006
0.004

| A |

0.002 1
2 L | A
12 14 16 18 2: |

PDF

than 1pW [20]. To create our transmitter-to-tag communica-
tion system, we need parameters that can be easily measured
using the envelope detector, and can also be modulated at
the transmitter using commodity hardware. Two possibil-
ities are implementing amplitude modulation by varying
transmission strength, or doing on on-off keying. Packet
amplitudes cannot be easily controlled on a per-packet basis
with commodity hardware, and furthermore is not robust
at long distances due to low SNR. On-off keying works at
longer distances, but does not work well with the presence
of ambient network traffic.

Packet length modulation (PLM): To overcome those
limitations, we used packet length modulation: packet du-
ration is easy for the transmitter to control, works well at a
range of distances, and is robust in the presence of ambient
network traffic. PLM is similar to the modulation scheme
used in [13]. In our scheme, a 0 bit is represented by pack-
ets of duration Ly and a 1 bit by L;. To control the length
of the packet, our transmitter sends packets of pre-defined
durations. The tag uses an envelope detector to identify the
presence of a packet and measure the duration. If a pulse
duration equals Ly or L; (within an error bound) a bit is
recorded to a buffer. This is much more robust in low-SNR
environments than amplitude modulation because the length
of a packet does not degrade with distance. If a pulse has a
duration besides Ly or L it is treated as noise and ignored.
This allows bits to be received successfully in the presence
of other transmissions. Our prototype implementation on
WiFi operates at approximately 500bps, which is sufficient
for operating the MAC layer.

To send the scheduling messages, the transmitter could
generate dummy packets, but a better way is to buffer ex-
isting traffic before sending it to the NIC, and then re-order
or re-packetize to get the necessary sequence of Lys and
Lis. This way, as long as the network is busy, the backscat-
ter messages impose negligible overhead on the rest of the
channel.

i,

394

P. Zhang!, C. Josephson!, D. Bharadia?, S. Katti'

100

g 80

§ 60

5 40
8

< 20

0

0 5 10 15 20 25 30 35 40 45 50

Distance (m)
Figure 4: Rate of successfully received scheduling mes-

sages vs distance transmitting at 15dBm.

Figure 4 shows the rate of decoding success vs distance.
The experiments were performed in a long hallway inside
an office building. For a reference voltage of 1.8v, the system
is able to successfully decode the scheduling messages with
over 70% accuracy when the tag is less than 4m away from
the transmitter, and can successfully decode preambles with
about 50% a distance of 50m. Due to increased SNR, higher
accuracy is possible at close proximity by increasing the
reference voltage in the comparator.

3 IMPLEMENTATION

We built a prototype of our system using off-the-shelf com-
modity 802.11g/n WiFi, ZigBee, and Bluetooth transceivers
and a customized backscatter tag. We describe the implemen-
tation details below.

3.1 Hardware platform

802.11g/n WiFi transceiver: Our 802.11g/n receiver is a
MacBook Pro laptop with a Broadcom BCM43xx WiFi card
that supports 802.11a/b/g/n/ac. We put the WiFi card into
monitor mode to report packets with bad checksums to our
software. After receiving the packets, we use tcpdump to
parse them and extract the tag bits.

We use an Intel 5300 WiFi card on an Intel NUC as the
standard 802.11g/n OFDM transmitter (15 dBm). We use the
firmware provided by [10] to control the rate of 802.11g/n
packets transmission.

ZigBee transceiver: We use TI CC2650 [4] as the ZigBee
transceiver and set the transmission power to 5dBm, which
is the maximum power allowed by this radio. The CC2650
radio dev board CC2650EM-7ID supports two types of an-
tennas: a PCB on-board antenna and an antenna with an
SMA interface. We use VERT2450 antenna because the beam
width is wide; it is mounted [2] on the SMA interface.

Bluetooth transceiver: We use TI CC2541 [3] as the
Bluetooth transceiver. This radio transmits at 1Mbps and
0 dBm using FSK modulation with a frequency deviation of
250kHz and a bandwidth of 1MHz. The modulation index
used is 0.5 = 0.01.

FreeRider tag: Figure 5 shows a hardware prototype of
the FreeRider tag. The tag has two VERT2450 [2] antennas,

FreeRider: Backscatter Using Commodity Radios

codeword
translator

Figure 5: FreeRider tag hardware prototype.

bytes in

bytes out
bo, b1, ..., bn
Channel decoder
Interleaving De-interleaving
Modulation Demodulation

Figure 6: Transmission and reception block diagrams
used in 802.11g/n.

bo, bt, ..., bn

110010010...

Channel encoder

transmitter receiver

!
Y Y

one for reception and one for transmission. The reception
antenna is connected to an LT5534 envelope detector, which
measures when an incoming signal starts. We measured a
0.35us delay between the starting point of an exciting signal
and the indicator signal from the envelope detector. In other
words, 0.35us after the excitation signal actually arrives, the
envelope detector will tell the processor that the excitation
signal has begun. In our evaluations, the performance does
not degrade when experiencing a 0.35us delay.

The other antenna is controlled by an ADG902 RF switch,
which decides when and how to backscatter the exciting
signal. The codeword translation module is implemented in
a low-power FPGA AGLN250. We also have a power man-
agement module on the tag which provides 1.5V and 3.3V to
the rest of the system.

Open source FreeRider platform: The source code of
the FreeRider platform is available on [?] under an academic
license to ensure reproducibility of results.

3.2 Implementation challenges

Each radio comes with its own physical layer stack with a
specific set of channel codes, interleaving techniques and
scrambling algorithms, all of which can interfere with code-
word translation and render it ineffective. We discuss how
to enable codeword translation despite these challenges.

3.2.1 Challenges backscattering OFDM WiFi. Figure 6
shows three factors that could cause trouble when decoding
a backscattered WiFi signal: the scrambler, the convolutional
channel encoder, and interleaving. The scrambler is a data
whitening engine where it takes the input data and XORs it

o 395
RIGHTS LI N K

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

input data

whitened data

Figure 7: The 802.11g scrambler architecture.
with a pseudorandom sequence. A scrambler ensures that the
data transmitted is not all zeros nor all ones, which causes
a bad peak-to-average ratio. The channel encoder uses con-
volutional encoding to improve its robustness over wireless
transmission. The interleaving engine re-orders the trans-
mitted bits sequence to ensure that even a bursty error on
wireless channel does not cause a burst of continuous errors
on the received data. We consider these three modules be-
cause they are placed before the modulator in an 802.11g/n
transmitter. We explain why such placement could cause
unsuccessful backscatter decoding next.

For any input sequence by, by, ..., by, the transmitted sig-
nal S(t) can be formulated as S(¢) = f(bo, b1, ..., b,) where
f() represents the operations introduced by the scrambler,
channel encoder, interleaver, and modulator. Since the cor-
responding demodulator, de-interleaver, channel decoder,
and descrambler in the receiver provide the reverse oper-
ations f~1(), the receiver is able to decode and output the
transmitted sequence.

Unfortunately, when a FreeRider tag is present and pro-
duces a signal g(to, t1, ..., t,) using tag bits to, t1, ..., t,, the
backscattered signal B(t) becomes the time-domain product
between the tag signal and the excitation signal. To see why
this is a problem, let us examine the binary case shown in
equation 7. This does not look like a signal that is generated
by XOR of the exciting signal bits and the tag bits and passed
through f(). Therefore, decoding the tag bits becomes hard.

B(t) = S(t)T(t)
= f(bo,bl,...,bn) Xg(to,tl, ...,tn) (7)
! = f(b() @ t(),bl (&) tl, ...,bn (&) tn)

One insight to solve this problem is redundancy, i.e map
one tag bit to multiple 802.11g/n bits. Instead of directly trans-
mitting ty, t1, ..., t,, the tag actually transmits a sequence
where a tag repeats each bit multiple times before switching
to the next one. We look at each module in the TX/RX chain
and understand why redundancy helps solve this problem.

The first module is the interleaving engine which inter-
leaves the data assigned to each subcarrier. Interleaving is
done per OFDM symbol [1]. In other words, the interleav-
ing engine will not interleave data belonging to two OFDM
symbols. Therefore, as long as we can ensure that the tag bit
duration is longer than an OFDM symbol, the interleaving
engine will not cause troubles.

Now we turn to the other two modules, the scrambler
and channel encoder. Both modules produce and maintain
a deterministic structure of the data fed into the modulator.

RIGHTS

CoNEXT *17, December 12-15, 2017, Incheon, Republic of Korea

‘fs_k S|gna‘l“ i backscatter signal
fo fi frequency
: w

Figu:re 8: A FreeRider tag embeds its information on a

Bluetooth signal.

The scrambler uses the structure shown in Figure 7 to do
data whitening. Even when the input is all zeros, the actual
data transmitted is a non-zero sequence. Such data whitening
reduces the peak-to-average power ratio in the RF front end.
The mathematical expression of the scrambler is shown in
equation 8.

Clk] = b[Kk] ® b[k — 3] ® b[k — 7] ®)

The channel encoder uses Equation 9 to encode the data at
6Mbps where b[k] is the input bit and C [k] and C;[k] are the
codewords generated using a 1/2 coding rate. For other bit
rates, the channel encoder is different. The data injected by
the tag will corrupt the structures created by both modules
and make backscatter decoding hard. How do we decode the
tag data given the presence of these two modules?

Cu[k] = blk] @ blk — 2] @ b[k — 3] ® b[k — 5] ® b[k — 6]
Calk] = blk] @ bk — 1] ® b[k — 2] ® b[k — 3] ® b[k — 6]

We simulated the two modules in Matlab and found that
as long as a tag injects one bit tag data on four OFDM sym-
bols (96 WiFi bits in 6Mbps data rate), we are able to ob-
tain around 1e bit error rate in decoding the tag bits. This
is because there is a one-to-one mapping between the in-
put sequence b[k] and the output of the two modules C[k]
or {C1[k], Co[k]}. Equation 8 and equation 9 show that the
sequence of {b[k] ® 1,b[k — 1] ® 1,...,b[k — 7] ® 1} can
generate C[k] ® 1 and {Ci[k] & 1,C;[k] @ 1}. Therefore,
when the tag does codeword translation and converts C[k]
and {C[k], C2[k]} to C[k] ® 1 and {Ci[k] & 1,C,[k] & 1},
the corresponding modules at the receiver should output
{blk]® 1,b[k — 1] ® 1,...,b[k — 7] ® 1}. We prove this via
empirical Matlab simulation and real system implementation
with a MacBook Pro laptop as the backscatter decoder.

The last factor that could impact backscatter decoding is
the pilot tone. Pilot tones in an OFDM symbol are used for
correcting the phase error. Such phase error correction could
remove the additional phase offset introduced by a tag, and
render incorrect tag data decoding. Fortunately, many WiFi
chips, such as Broadcom BCM43xx, do not use pilot tones
for phase error correction. Therefore, we are often still able
to decode the backscattered tag data.

3.22 Challenges backscattering ZigBee. ZigBee uses
OQPSK modulation where there is a constant time-domain
offset (half a bit) between the in-phase signal and the quadra-
ture signal. Such offset is introduced for reducing the signal

i,

396

P. Zhang!, C. Josephson!, D. Bharadia?, S. Katti'

Peak-to-Average Power Ratio (PAPR) by avoiding the 180°
phase transition between neighboring bits. If the tag intro-
duces a 180° phase transition between neighboring bits in
the backscattered ZigBee, it could damage the OQPSK signal
structure and cause trouble decoding.

One approach of solving this problem is embedding one
tag bit to multiple (N) OQPSK symbols. When a tag transmits
data one, instead of introducing the 180°phase offset on a
single OQPSK symbol, the tag actually introduces the same
180° additional phase offset on N OQPSK symbols. The first
tag-modified OQPSK symbol might be incorrectly decoded
by a commercial ZigBee decoder because of the potential
OQPSK signal structure violation discussed above. However,
the following N — 1 tag-modified OQPSK symbols can be
correctly decoded because the structure of OQPSK signals is
maintained. Therefore, as long as we choose a large N, we
can embed information in ZigBee traffic. We found that in
practice a value of N = 8 is sufficient.

3.23 Challenges backscattering Bluetooth. There are
two factors, modulation index i, and channel bandwidth w,
that could cause trouble when decoding the backscattered
Bluetooth signal. Modulation index i is defined as]% and
represents the ratio between the frequency deviation of an
FSK signal and the bandwidth it occupies. A commercial
Bluetooth radio, such as [3], usually uses a modulation index
0.5. When a FreeRider tag toggles its RF transistor at Af,
while producing the desired backscattered signal, it also pro-
duces an undesired signal on the other side of the spectrum
as shown in Figure 8. This is because the backscattered signal
is the time-domain product between the Bluetooth signal
and the tag signal. Therefore a double-sideband backscat-
ter signal is produced. We cannot use the single-sideband
backscatter technique proposed by [13] to eliminate the un-
desired signal because we do not know which side (left or
right) of the backscattered signal is undesired.

Fortunately, we can eliminate the undesired backscattered
signal by leveraging the fact that a Bluetooth radio treats
signals outside of a channel as interference and is able to
eliminate them. Therefore, the selection of Af also needs to
satisfy the following two conditions, which ensure that the
undesired signal sits outside of the backscatter channel and
will be eliminated:

A+Af>fA+A-D)F
fo-Af <fo-(A-D7F

FSK radio data one
(10)
FSK radio data zero

3.3 Low-power tag design

Another challenge is tag power consumption. Traditional
RFID tags run a low speed clock and consume several mi-
crowatts of power. When we incorporate 20MHz frequency
shifting on the tag, how much power does it consume? If we

FreeRider: Backscatter Using Commodity Radios

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

(a) LOS deployment

oy =
571 [0 065 u Rx 60) [0se]057 556
« — o e 22m e . ‘(“1 1
ﬁ - = o E—m—
Tag; =/ —
073 { [oes]
v ()
™= o g
!

(b) NLOS deployment

Figure 9: Floor plan and experimental setup of our system for LOS and NLOS deployments.

g 70 T T T T T T - - 10° + 70
60 | - -
g ,_/\“‘y\/\’\ 107 1 E -75
5 40 \ } & 102 j 1 T 80 |
£ 30 . m = .85 ™
2 20 Ll i 3 A, L] - e
S 1o L ¥ ey 10 '\/‘k T -90 |
£ o i . N 10 ‘ ‘ -95 ‘ ‘
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0O 5 10 15 20 25 30 35 40 45
Distance (m) Distance (m) Distance (m)
(2) Throughput (b) BER (c) RSSI

Figure 10: Backscatter throughput, BER, and RSSI across distances in the WiFi LOS deployment.

directly take an off-the-shelf 20MHz oscillator to drive the
system, the tag consumes several milliwatts of power [13]
and is not low power. [27] and [13] propose the design of
a low-power tag that is able to do such frequency shifting.
[27] uses a ring oscillator to produce a 20MHz frequency
shifting while only consuming 20uW of power. [13] designs
alow-power phase-lock loop that is able to produce a 36 MHz
frequency shifting while only consuming 28uW of power.
FreeRider takes the same ring oscillator design as [27] and
produces the square wave signal needed for achieving the
desired frequency shifting. We simulated using the TSMC
65nm technology, and the overall power consumption of the
FreeRider tag is around 30uW depending on the type of the
excitation signal. Most of the power (194W) is consumed
by the 20MHz clock needed for frequency shifting. 12uW is
needed for operating the RF switch and 1~3uW is needed
for running the control logic which determines the type of
codeword translator to run. In the next section we present
an empirical evaluation and analyze the results.

4 EVALUATION

4.1 Experimental setup

Figure 9(a) and Figure 9(b) show the experimental setup of
our system. We deployed a FreeRider tag 1m away from
an exciting signal transmitter (802.11g/n WiFi, ZigBee, or
Bluetooth). We use these commodity radios with no hard-
ware modifications or amplifiers. Then, we move the receiver
away from the tag and measure FreeRider’s throughput, bit
error rate (BER), and received signal strength indicator (RSSI).
We conducted both line-of-sight (LOS) and non-line-of-sight
(NLOS) experiments. In the LOS experiments, all devices are
placed in a hallway. In the NLOS experiments, the transmit-
ter and the tag are deployed in a room while the receiver is
deployed in a hallway. In the NLOS deployment, the backscat-
tered signal passes through multiple walls.

RIGHTS LI L)

4.2 FreeRider’s performance

4.2.1 Backscatter with 802.11g/n WiFi.

LOS deployment: Figure 10(a) shows the throughput of
our system with increasing distance in LOS deployment. The
802.11g/n WiFi transmitter sends its OFDM signal at 11dBm,
which is the maximum allowed by our hardware. We see that
the receiver is still able to decode the backscattered signal
at 42m, 1.4X longer than the maximum distance reported
by Passive WiFi [16] and Inter-Technology Backscatter [13],
and 8.4x longer than the maximum distance achieved by
FS-Backscatter [27]. Such long communication distance is
sufficient for many Internet-of-Things applications.

Our system achieves ~60kbps data rate when the receiver
is less than 18m away from the tag. When the receiver moves
farther to ~26m-36m, throughput degrades to ~15kbps. This
is a lower data rate than [25] because OFDM symbols are
longer in duration than DSSS symbols. One interesting ob-
servation here is that the bit error rate remains low even at
longer distances as shown in Figure 10(b) despite the fact that
RSSI does degrade across distance as shown in Figure 10(c).
For example, we still obtain 1e~* BER when the receiver is
40m away from the tag. This observation tells us that at
longer distances, if a backscattered packet reaches the re-
ceiver, then it is very likely that we are able to extract the tag
bits with low BER. If the header itself is not decoded, then
we observe packet loss and lower throughput.

NLOS deployment: We also evaluated the performance
of our system in a non-line-of-sight deployment where both
the 802.11g/n transmitter and the tag are deployed in a room
while the receiver moves away in a hallway. Figure 11(a)
shows the throughput of our system in the NLOS deploy-
ment. The receiver is still able to receive the backscattered
packets when it is 22m away from the tag. Similar to the
LOS deployment, we achieve ~60kbps data rate when the

397

RIGHTS

CoNEXT *17, December 12-15, 2017, Incheon, Republic of Korea

P. Zhang!, C. Josephson!, D. Bharadia?, S. Katti'

Y 10° + -70
£ 50 P - 72
= 10] E 74 i |
= 40 o
3 -2 5 76
3 30 w 10 3 = -78
20 3 + \j 2 80 /
3 10 /—*\,__‘ \// g 8 e
F o ‘ : ‘ } 107 L—t= : Y -84 i
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Distance (m) Distance (m) Distance (m)
(2) Throughput (b) BER (c) RSSI

Figure 11: Backscatter throughput, BER, and RSSI across distances in the WiFi NLOS deployment.

7 16 10° 2 -75
2 14 =
£ 12 g -80
5 10 [-85
3 -1 T
a 8 w 10 9 A
2 3 o & -9
=]
3 4 R ol g o5 SN
s 2 -2
= 0 - : } 10 - -100 - -
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Distance (m) Distance (m) Distance (m)
(a) Throughput (b) BER (c) RSSI

Figure 12: Backscatter throughput, BER, and RSSI across distances in the ZigBee LOS deployment.

receiver is less than 14m away from the tag. At longer dis-
tances, backscatter throughput degrades to ~20kbps.
Figure 11(b) shows the BER of our system in the NLOS de-
ployment. Similar to the LOS deployment, we achieve a low
BER across distances. However, backscatter communication
stops at 22m even though we obtain an RSSI of -84dBm at
22m as shown in Figure 11(c). We find that when the receiver
is more than 22m away from the tag, the backscattered sig-
nal actually needs to pass one more wall before reaching
the receiver as shown in Figure 9(b). As a result, the signal
becomes too weak and the packet header cannot be detected.

4.2.2 Backscatter with ZigBee. We also evaluated the
performance of our system when the exciting signal is a
5dBm ZigBee signal. Figure 12(a) shows the throughput of
our system when the ZigBee receiver moves away from
the tag. The receiver receives backscattered packets from
up to 22m away. Figure 12(c) shows that the received sig-
nal strength degrades to -97dBm at 22m, close to the noise
floor of the ZigBee radio. Therefore, receiving the backscat-
tered packets at longer distances becomes hard. We achieve a
~14kbps backscatter data rate when the receiver is less than
12m away from the tag. At farther distances, the throughput
degradation is not severe. We still obtain a 12kbps data rate
at a distance of 20m. The bit error rate we achieve is ~ 5¢~2
across all distances, higher than the case when the exciting
signal is 802.11g/n WiFi.

4.2.3 Backscatter with Bluetooth. Finally, we evalu-
ated the performance of our system when the exciting sig-
nal is a 0dBm Bluetooth transmitter. Figure 13(a) shows the
throughput of our system when the receiver moves away
from the tag. We see that the receiver decodes backscatter

i,

398

packets up to 12m. Figure 13(c) shows that the backscat-
ter signal has a strength of -100dBm at 12m, close to the
noise floor. Therefore, decoding the backscattered packets
at farther distance becomes hard. When the receiver is less
than 10m away from the tag, we achieve a ~50kbps data
rate. Throughput degrades to 19kbps at 12m and the BER
increases to 0.23.

4.3 Impact of TX-to-tag distance

We also evaluated how the transmitter-to-tag distance im-
pacts the communication range of our system. In this exper-
iment, we varied the transmitter-to-tag distance and mea-
sured the maximum receiver-to-tag distance where backscat-
ter communication can be sustained. Figure 14 shows the re-
sults. When backscattering 802.11g/n WiFi, at a transmitter-
to-tag distance of 4m, the maximum receiver-to-tag dis-
tance is 8m. This is less than the 42m achievable when the
transmitter-to-tag distance is 1m. Decreasing the receiver-
to-tag communication distance yields a slight increase in
the achievable transmitter-to-tag distance. The operational
regime of our system is shown in the grey area in Figure 14.
When a ZigBee or Bluetooth radio is used, both the transmitter-

to-tag distance and the receiver-to-tag distance become shorter.
The maximum transmitter-to-tag distance is 2m and 1.5m
for ZigBee and Bluetooth radios respectively, and the corre-
sponding operational regime of our system is marked with
green and purple in Figure 14. Both regimes are smaller com-
pared to the case when an 802.11g/n WiFi is used primarily
because the transmission power of the ZigBee and Bluetooth
radios is lower (15dBm vs 5dBm and0dBm).

RIGHTS

FreeRider: Backscatter Using Commodity Radios

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

g 60 10° a -80
g 50 £ 8 \
~ 40 o
5 -90
2 w 107" / 1 2 95 M\—M\/\% |
= % A g . ~
3 10 @ -100 3
£ o 102 i L -105 ‘ ‘

0 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12

Distance (m) Distance (m) Distance (m)
(a) Throughput (b) BER (c) RSSI

Figure 13: Backscatter throughput, BER, and RSSI across distances in the Bluetooth LOS deployment.

50

t 802.11g/n WiFi =———
* 40 X ZigBee - ¥~ |
8 \ Bluetooth - - -
o

% 30

2 \

o

2 20 . ~—

[-

) X

2 10 Mg

% % X

0

05 1 15 2 25 3 35 4 45
. T_X-to-ng Distance (m)
Flgure 14: Communication range of our System.

1 o=
No Backscatter =——
08 I Backscattering WiFi = %=
: Backscattering ZigBee - #=- #F
Backscattering Bluetooth i
L 08
8 4
0.4 p—
i —
0.2 f
0 = oo i
26 28 30 32 34 36 38 40 42

Throughput (Mbps)
Figure 15: WiFi throughput when backscatter is

present and absent.

4.4 Co-existence with WiFi networks

Next, we see if the FreeRider system can co-exist with exist-
ing WiFi networks. In this experiment, we generated artificial
WiFi traffic where a laptop transfers files via WiFi on channel
6 (2.437GHz). Then, we run backscatter on ~2.472-2.48GHz
(the exact frequency depends on the type of the exciting
signal). We measure how the WiFi traffic and backscatter
impact each other when the backscatter channel does not
conflict with the WiFi channel.

4.4.1 Does backscatter impact WiFi? Figure 15 shows
the WiFi throughput when the backscatter tag is present or
absent. When backscatter is absent, WiFi is able to transmit
with a 37.4Mbps median data rate. Then, we place a backscat-
ter tag 1m away from the WiFi receiver and measure the
WiFi throughput. The tag runs three codeword translators
sequentially, one for backscattering 802.11g/n WiFi, one for
ZigBee, and one for Bluetooth. The median WiFi throughput
measured is 37Mbps, 37.9Mbps, and 36.8Mbps respectively,
close to the WiFi throughput when the backscatter tag is not
present. Therefore, a backscatter tag does not cause interfer-
ence on an existing WiFi traffic.

4.4.2 Does WiFi impact backscatter? Now we turn
to the other case to see whether or not concurrent WiFi

i,

399

traffic impacts backscatter decoding. When a tag backscat-
ters its data in a channel that is occupied by WiFi traffic,
backscatter throughput degrades to zero because the WiFi
traffic is usually ~30dB higher than the backscattered sig-
nal [27]. Therefore, backscatter suffers. In this experiment,
we focus on the case where existing WiFi traffic does not
share the same channel as backscatter, and try to understand
how backscatter performs in the presence of WiFi traffic on
adjacent channels.

Figure 16(a) shows the backscatter throughput when an
802.11g/n WiFi is used as the exciting signal, the tag backscat-
ters on channel 13 (2.472GHz), and the WiFi traffic runs on
channel 6 (2.437GHz). When the WiFi traffic is absent, we
achieve 61.8kbps median backscatter throughput. When the
WiFi traffic is present, the backscatter throughput is still
61.8kbps. However, we can see that backscatter is able to
reach 68kbps for 20% of the time when the WiFi traffic is
absent, and degrades to 35kbps for 10% of the time when the
WiFi traffic is present. Therefore, the presence of WiFi traffic
does impact the backscatter throughput. To minimize this
impact, we can use a technique similar to the one in [25] and
use RTS-CTS to reserve the channel for backscatter.

Figure 16(b) and Figure 16(c) show the backscatter through-
put when a tag backscatters a ZigBee signal and a Bluetooth
signal respectively. In both experiments, the tag backscatters
on channel 2.48GHz. We see that the backscatter throughput
difference between WiFi traffic being present or not is only
1~2kbps. Therefore, the existing WiFi traffic does not impact
the backscatter performance when a ZigBee or Bluetooth
radio is leveraged. One reason is because both radios are nar-
rowband, and therefore, have better performance in filtering
out-of-band interference.

4.5 Evaluating MAC layer performance

We look at the performance of our system when communi-
cating with multiple tags. Figure 17(a) shows the aggregated
throughput when we place 4, 8, 12, 16, and 20 tags in front
of the transmitter. The aggregate throughput is lower than
the single tag case for two reasons: control overhead and
collisions. As the number of tags increases the aggregated
throughput increases. This is due to the relative ratio of con-
trol overhead decreasing when there are more transmission
slots used. If we extend our simulation beyond the 20 tags

RIGHTS LI

CoNEXT *17, December 12-15, 2017, Incheon, Republic of Korea

1

P. Zhang!, C. Josephson!, D. Bharadia?, S. Katti'

WiFi Present —+— _; WiFi Present —+— ! WiFi Present —+—
0.8 WiFi Absent = =% - — r- - 0.8 WiFi Absent - -% - 0.8 WiFi Absent - =% - .
w 06 w 06 T w 06 %
=] =] a
o 0.4 o 04 A] 0.4
0.2 % 0.2t - | 1 0.2 -
0 % 0 ‘ ;“/ 'e ‘ 0 ‘ P’
35 40 45 50 55 60 65 70 14 14.5 15 15.5 16 50 52 54 56 58 60 62 64
Throughput (kbps) Throughput (kbps) Throughput (kbps)

(a) Backscattering 802.11g/n WiFi signals

(b) Backscattering ZigBee signals

(c) Backscattering Bluetooth signals

Figure 16: FreeRider backscatter throughput when a WiFi traffic is present or absent.

Measured mmm

15
06
[04
5 g 02
0 0

4 8 12 16 20 4 8
Number of Tags

Throughput (kbps)
5
Fairness Index

12
Number of Tags

16 20

(a) Aggregated throughput (b) Jain’s fairness index

Figure 17: FreeRider throughput and Jain’s fairness in-
dex when communicating with 4, 8, 12, 16, and 20 tags.

we had physically available, the throughput asymptotes at
about 18kbps. If there are no collisions (i.e. a TDM scheme),
the simulation throughput asymptotes at about 40kbps.

Framed Slotted Aloha is well-suited to applications that
have low data needs and where the number of active tags
can increase or decrease without warning, such as inventory
tracking. More data-intensive applications would benefit
from a time division scheme, which would be possible to
implement in FreeRider, but we limited the analysis to a
single MAC layer design for space reasons.

Figure 17(b) shows the Jain’s fairness index [14] when 4,
8,12, 16, and 20 tags are present. When the number of tags
increases, the fairness index stays about the same because
the scheduler dynamically allocates a larger number of slots
when more tags are present. The averaged fairness index is
0.85 when 20 tags are present, which suggests that most of
tags still obtain similar opportunities for data transmission.

5 RELATED WORK

The range and throughput of backscatter systems has im-
proved in recent years [5, 6, 9, 11, 12, 17-19, 22-24, 26]. De-
spite the improvements, one remaining bottleneck of de-
ploying backscatter systems is the lack of backscatter reader
infrastructure. Therefore, researchers have been looking for
opportunities to leverage commodity radios, such as WiFi
and Bluetooth. [15] embeds backscatter information on top
of WiFi traffic by changing the strength of the reflected sig-
nal. Due to the interference from the WiFi transmitter, [15]
achieves relatively low data rate and short range. [8] and [16]
modulate a Bluetooth and an 802.11b baseband signal respec-
tively on a single tone signal sent by an emitter. Both enable
backscatter communication with commodity WiFi and Blue-
tooth receivers at the cost of deploying a dedicated single
tone emitter. [13] removes the single tone emitter and uses a

Ay

400

Bluetooth radio to transmit a specific data sequence to gener-
ate the tone signal. Therefore, the Bluetooth radio itself can-
not be used for productive data communication. [27] enables
WiFi-to-WiFi and Bluetooth-to-Bluetooth backscatter com-
munication within a short range. [25] enables backscatter
communication between two 802.11b WiFi radios. However,
none of these work with widely deployed commodity radios,
such as 802.11n WiFi and Bluetooth, while the excitation
signal transmitter is doing productive data communication.
[25] relies on 802.11b signals for backscatter. However, such
signals do not naturally exist in many locations because most
WiFi clients run 802.11n/ac with OFDM signals whenever
possible. Additionally, [25] does not support communication
with multiple tags. [6] requires hardware modifications on
commodity WiFi access points. [8] and [16] require an ad-
ditional single tone emitter. [13] require specific excitation
signals, and therefore, the excitation signal transmitter can-
not be used for productive data communication. Our system
is the first that works with popular 802.11n WiFi and Blue-
tooth radios while the excitation signal transmitter is used
for productive data communication.

6 CONCLUSION

FreeRider, in our opinion, is the first system that enables us
to leverage widely-used commodity wireless hardware for
deploying backscatter. FreeRider is also the first system that
implements and evaluates more than one tag communicat-
ing with the commodity receiver. Unlike previous work, the
excitation signal can be used for productive data communi-
cation, which means that we can deploy backscatter devices
at any location where these commodity radios are available.
FreeRider does so by using a technique called codeword trans-
lation, which embeds a tag’s information in the backscattered
signal while ensuring that the backscattered signal can be
decoded by a commodity wireless radio. FreeRider provides
the opportunity to deploy backscatter systems using existing
wireless infrastructure, and enables simple ultra-low power
wireless connectivity for IoT devices.

ACKNOWLEDGMENT

We thank the shepherd Kyle Jamieson and the anonymous
reviewers for their insightful comments.

FreeRider: Backscatter Using Commodity Radios

REFERENCES

(1]
(2]

(3]
(4]
(5]

(6]

[10]

(11]

[12]

(13]

[16]

(17]

(18]

(19]

RIGHTS

[n. d.]. 802.11 Reference Design: PHY. https://warpproject.org/trac/
wiki/802.11/PHY.

[n. d.]. Ettus Research VERT2450 Antenna. https://www.ettus.com/
product/details/VERT2450.

[n. d.]. TI CC2541 radio. http://www.ti.com/product/CC2541.

[n. d.]. TI CC2650 radio. http://www.ti.com/product/CC2650.

Omid Abari, Deepak Vasisht, Dina Katabi, and Anantha Chandrakasan.
2015. Caraoke: An e-toll transponder network for smart cities. In ACM
SIGCOMM Computer Communication Review, Vol. 45. ACM, 297-310.
Dinesh Bharadia, Kiran Raj Joshi, Manikanta Kotaru, and Sachin Katti.
2015. BackFi: High Throughput WiFi Backscatter. In Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication.
ACM, 283-296.

Michael Buettner and David Wetherall. 2008. An empirical study of
UHF RFID performance. In Proceedings of the 14th ACM international
conference on Mobile computing and networking. ACM, 223-234.
Joshua F Ensworth and Matthew S Reynolds. 2015. Every smart
phone is a backscatter reader: Modulated backscatter compatibility
with bluetooth 4.0 low energy (ble) devices. In RFID (RFID), 2015 IEEE
International Conference on. IEEE, 78-85.

Jeremy Gummeson, Pengyu Zhang, and Deepak Ganesan. 2012. Flit:
a bulk transmission protocol for rfid-scale sensors. In Proceedings of
the 10th international conference on Mobile systems, applications, and
services. ACM, 71-84.

Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. 2011.
Tool release: gathering 802.11 n traces with channel state information.
ACM SIGCOMM Computer Communication Review 41, 1 (2011), 53-53.
Pan Hu, Pengyu Zhang, and Deepak Ganesan. 2015. Laissez-Faire:
Fully asymmetric backscatter communication. In Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication.
ACM, 255-267.

Pan Hu, Pengyu Zhang, Mohammad Rostami, and Deepak Ganesan.
2016. Braidio: An integrated active-passive radio for mobile devices
with asymmetric energy budgets. In Proceedings of the 2016 conference
on ACM SIGCOMM 2016 Conference. ACM, 384-397.

Vikram Iyer, Vamsi Talla, Bryce Kellogg, Shyamnath Gollakota, and
Joshua Smith. 2016. Inter-Technology Backscatter: Towards Inter-
net Connectivity for Implanted Devices. In Proceedings of the 2016
conference on ACM SIGCOMM 2016 Conference. ACM, 356-369.

Raj Jain, Arjan Durresi, and Gojko Babic. 1999. Throughput fairness
index: An explanation. Technical Report. Tech. rep., Department of
CIS, The Ohio State University.

Bryce Kellogg, Aaron Parks, Shyamnath Gollakota, Joshua R Smith,
and David Wetherall. 2014. Wi-fi backscatter: internet connectivity
for rf-powered devices. In Proceedings of the 2014 ACM conference on
SIGCOMM. ACM, 607-618.

Bryce Kellogg, Vamsi Talla, Shyamnath Gollakota, and Joshua R Smith.
2016. Passive Wi-Fi: bringing low power to Wi-Fi transmissions. In
13th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 16). 151-164.

Vincent Liu, Vamsi Talla, and Shyamnath Gollakota. 2014. Enabling
instantaneous feedback with full-duplex backscatter. In Proceedings
of the 20th annual international conference on Mobile computing and
networking. ACM, 67-78.

Jiajue Ou, Mo Li, and Yuanging Zheng. 2015. Come and be served:
Parallel decoding for cots rfid tags. In Proceedings of the 21st Annual
International Conference on Mobile Computing and Networking. ACM,
500-511.

Aaron N Parks, Angli Liu, Shyamnath Gollakota, and Joshua R Smith.
2014. Turbocharging ambient backscatter communication. In Proceed-
ings of the 2014 ACM conference on SIGCOMM. ACM, 619-630.

1T ‘f

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

401

[20]

[21]

Nathan Pletcher. 2008. Ultra-Low Power Wake-Up Receivers for Wireless
Sensor Networks. Ph.D. Dissertation. University of California Berkeley.
Vamsi Talla and Joshua R Smith. 2013. Hybrid analog-digital backscat-
ter: A new approach for battery-free sensing. In RFID (RFID), 2013
IEEE International Conference on. IEEE, 74-81.

[22] Jue Wang, Haitham Hassanieh, Dina Katabi, and Piotr Indyk. 2012.

Efficient and reliable low-power backscatter networks. In Proceedings
of the ACM SIGCOMM 2012 conference on Applications, technologies,
architectures, and protocols for computer communication. ACM, 61-72.

[23] Jue Wang and Dina Katabi. 2013. Dude, where’s my card?: RFID

[24]

[25]

[26]

[27]

positioning that works with multipath and non-line of sight. In ACM
SIGCOMM Computer Communication Review, Vol. 43. ACM, 51-62.
Lei Yang, Yekui Chen, Xiang-Yang Li, Chaowei Xiao, Mo Li, and Yun-
hao Liu. 2014. Tagoram: Real-time tracking of mobile RFID tags to
high precision using COTS devices. In Proceedings of the 20th annual
international conference on Mobile computing and networking. ACM,
237-248.

Pengyu Zhang, Dinesh Bharadia, Kiran Joshi, and Sachin Katti. 2016.
Hitchhike: Practical backscatter using commodity wifi. In ACM SEN-
SYS.

Pengyu Zhang, Pan Hu, Vijay Pasikanti, and Deepak Ganesan. 2014.
EkhoNet: high speed ultra low-power backscatter for next generation
sensors. In Proceedings of the 20th annual international conference on
Mobile computing and networking. ACM, 557-568.

Pengyu Zhang, Mohammad Rostami, Pan Hu, and Deepak Ganesan.
2016. Enabling practical backscatter communication for on-body
sensors. In Proceedings of the 2016 conference on ACM SIGCOMM 2016
Conference. ACM, 370-383.

https://warpproject.org/trac/wiki/802.11/PHY
https://warpproject.org/trac/wiki/802.11/PHY
https://www.ettus.com/product/details/VERT2450
https://www.ettus.com/product/details/VERT2450
http://www.ti.com/product/CC2541
http://www.ti.com/product/CC2650

	Abstract
	1 Introduction
	2 Design
	2.1 Understanding backscattered signals
	2.2 Codeword translation
	2.3 Backscatter with commodity radios
	2.4 MAC protocol

	3 Implementation
	3.1 Hardware platform
	3.2 Implementation challenges
	3.3 Low-power tag design

	4 Evaluation
	4.1 Experimental setup
	4.2 FreeRider's performance
	4.3 Impact of TX-to-tag distance
	4.4 Co-existence with WiFi networks
	4.5 Evaluating MAC layer performance

	5 Related Work
	6 Conclusion
	References

