

Sigcomm 2021

Two beams are better than one Towards Reliable and High Throughput Millimeter-wave Links

Ish Kumar Jain Raghav Subbaraman Dinesh Bharadia University of California San Diego

Vehicular application

AR/VR application

Requirements for Vehicular and AR/VR applications

Millimeter-wave provides high throughput but lacks reliability

User mobility

Blockage

mmReliable: Two beams are better than one!

Traditional: Single Beam

mmReliable: Multi-Beam (multiple main lobes)

Multi-beam link avoids a single point of failure -> Reliable link

mmReliable: Towards Reliable and High Throughput Millimeter-wave Links

- ✤ High reliability
 - Corollary of using multi-beam
- High throughput
 - Creating Constructive multi-beam
- Easy to create
 - Standard 5G testbed
 - 5G NR compliant
- Easy to maintain
 - Proactive (not reactive) user tracking and beam maintenance

mmReliable: Multi-Beam (multiple main lobes)

Can multi-beam provide high throughput?

Multi-beam provides 2x SNR gain than single beam -> Higher throughput

Achieving high throughput with per-beam phase control

mmReliable requires phase control to create constructive multi-beam

Constructive multi-beam also require per-beam power control

Constructive multi-beam requires both phase and power control to achieve higher SNR and higher throughput

Strong multi-path exists for mmWave

Material	Reflection loss (28 GHz)
Metal surface	1-3 dB
Glass surface	1-6 dB
Dry-wall, Concrete	5-10 dB

Multi noth anvironment

Strong reflectors leads to higher throughput using constructive multi-beam

Reference: Telecom Infra Project: Analysis of 28GHz and 60GHz Channel Measurements in an Indoor Environment

Constructive Multi-beam can be created using standard mmWave phased arrays

Constructive Multi-beam can be generated with COTS hardware

mmReliable is 5G NR protocol compliant

More details in our paper...

Proactively maintaining multi-beam for a **mobile** user

We evaluate mmReliable on 5G testbed **mMobile**

Indoor and outdoor evaluation of mmReliable

Indoor 5m link

Outdoor 10m - 80m link

Multi-beams are resilient to blockage

Multi-beam maintain high throughput despite occasional blockages

mmReliable provides improved throughput and reliability

Achieve **100 %** reliability (median)

While providing **1.5x** higher throughput

Sigcomm 2021

Two beams are better than one Towards Reliable and High Throughput Millimeter-wave Links

Ish Kumar Jain, Raghav Subbaraman, Dinesh Bharadia

Artifacts available
https://wcsng.ucsd.edu/mmreliable
ikjain@eng.ucsd.edu

