mmSpoof: Resilient Spoofing of Automotive Millimeter-wave Radars using Reflect Array

Rohith Reddy Vennam¹, Ish Kumar Jain¹, Kshitiz Bansal¹, Joshua Orozco¹, Puja Shukla¹, Aanjhan Ranganathan², Dinesh Bharadia¹

¹ University of California San Diego, La Jolla, CA

² Northeastern University, Boston, MA

mmWave Radars in automotive vehicles (ADAS)

Are these mmWave Radars secure enough?

Spoofing mmWave Radars

Radar Spoofing: Manipulating radar measurements with a desired quantity for instance, changing distance (d) and velocity (v) measured by the radar with a controllable value.

Attack model

Goal: Attacker should independently spoof victim radar's distance and velocity

Current spoofing attacks are not feasible

Prior works used wired synchronization

mmSpoof: Resilient spoofing of mmWave radars using reflect array

mmSpoof does not require any synchronization between attacker and victim

mmSpoof: Contributions

Distance estimation by radar

Spoofing distance: Naive solution

Positive delays increase distance, but we cannot create negative delays, which leads to a failure in spoofing shorter distances.

Spoofing distance: mmSpoof's approach

Frequency shift at reflect array spoof distance measured at radar

Velocity estimation by radar

Spoofing velocity: mmSpoof's approach

coupling issue.

De-coupling distance and velocity spoofing: Changing only distance

Periodicity in velocity spoofing

Frequency shifts in steps of F_{chirp} only changes distance while keeping the velocity constant

De-coupling distance and velocity spoofing: Changing only velocity

Negligible distance change for small frequencies

Small frequency shifts $< F_{chirp}$ only changes velocity

mmSpoof: Architecture design of reflect array (Two phased arrays and SDR)

Hardware feasibility: A prototype can easily build with 2 phased arrays and SDR

Demonstrating radar parameter estimation with real radar data

UC San Diego

JACOBS SCHOOL OF ENGINEERING

Electrical and Computer Engineering

Attack demonstration: Radar measurements when car ahead is approaching closer to it

Attack goal: spoof radar to mimic this scenario with phantom car

Attack demonstration: Static scenario

when there is no relative velocity between attacker and victim

Static scenario: Evaluation setup with COTs hardware

Spoofing both distance and velocity in static scenario

19

Attack demonstration: Moving scenario

when there is *relative velocity* between attacker and victim

hardware

Spoofing both distance and velocity in moving scenario (Lidar as no spoof case)

Spoofing attacks on Radar

Attack model	Independent distance & velocity spoofing	No synchronization requirement	No need-to-know victim's radar parameters	Feasibility with COTs Hardware
R. Komissarov, et. al	✓	×	×	✓
Nallabolu, et. al	×	\checkmark	×	×
A. Lazaro, et. al	~	✓	×	×
S. Nashimoto, et. al	×	×	×	✓
mmSpoof				

mmSpoof meets all of these requirements and has been demonstrated as a robust attack

Counter measures to mmspoof

UC San Diego JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

"mmSpoof: Resilient Spoofing of Automotive Millimeterwave Radars using Reflect Array"

Scan for the project webpage https://wcsng.ucsd.edu/mmspoof

