
RFSynth: Data generation and testing platform for
spectrum information systems

Hari Prasad Sankar∗
ECE, UC San Diego

Raghav Subbaraman∗
ECE, UC San Diego

∗ Equally credited authors

Tianyi Hu
JASR Systems, San Diego

Dinesh Bharadia
ECE, UC San Diego

Abstract—The paper presents a scalable RF data generation
framework which aims to address the challenges of limited data
generation/testing platforms for spectrum sensing systems. The
proposed framework combines simulation and real-world data
generation methods to enable large and diverse data sets for
training and testing RF ML models and spectrum sensing sys-
tems. The framework includes modules for metadata generation
which allows for easy experimentation. The effectiveness of the
proposed framework is demonstrated through experiments in-
cluding signal detection and modulation classification. This paper
contributes to the development of a comprehensive framework for
generating RF IQ data with ease that can significantly reduce the
development and deployment time of complex wireless systems.

Index Terms—Wireless data generation, RF Machine learning,
spectrum sensing, wireless system testing

I. INTRODUCTION

The advent of next-generation wireless systems, including
the Internet of Things (IoT) and 5G mmWave technologies,
underscores a critical challenge: the efficient utilization of
dynamically available spectrum spaces. With the expansion
of these technologies, failing to capitalize on these spaces
can incur significant opportunistic costs. Essential to harness-
ing this potential is the development of systems capable of
intelligently monitoring RF spectrum activity and allocating
resources across diverse applications. However, the design and
testing of these data-intensive spectrum information processing
systems present considerable hurdles. A primary challenge lies
in generating controlled RF activities with accurate metadata,
essential for testing these systems comprehensively. Tradi-
tional methods, relying on off-the-shelf devices, offer limited
control over signal transmissions, complicating the process
further. Additionally, the burgeoning use of deep learning
in the physical layer amplifies the demand for extensive,
well-labeled datasets for algorithm tuning and RF ML model
training [1]. Despite commendable efforts to compile and share
such datasets [2], [3], creating customized, large-scale datasets
remains a daunting task due to configurability constraints,
computational limitations, and memory requirements.

Existing approaches to address these challenges primarily
involve simulation environments and the use of real devices
for system testing. While useful, these methods fall short in
accurately representing real-world scenarios systems may en-
counter, constrained by computational power, device availabil-
ity, and signal diversity. Industry-standard signal generators
offer some capabilities but come with prohibitive costs. More-

over, testing interference management, signal detection in the
presence of interference, and other advanced functionalities is
hampered by the lack of control over experimental conditions.
If one has to develop an end-to-end solution to tackle data
availability and address testing problems faced by spectrum
data processing systems, It is desired to have the following
functional features:

• A comprehensive signal generation engine that provides
high fidelity data,

• Precise control over data generation and transmission,
• A forensic framework that ensures repeatability and fa-

cilitates algorithm tuning,
• User-friendly access for broad applicability.
In this paper, we propose, RFSynth, a system that can

generate IQ data and establish a controlled RF environment
with aforementioned qualities. We discuss our efforts to tackle
design challenges, including creating abstractions for RF data
generation, accurately simulating non-idealities, signal super-
position, and generating precise metadata for effective training
and forensics. We validate our contributions through case
studies demonstrating various simulated and real-world OTA
scenarios. RFSynth is available under an open source license
at https://github.com/ucsdwcsng/rfsynth.

II. BACKGROUND: TESTING AND DATA REQUIREMENTS
FOR SPECTRUM INFORMATION SYSTEMS

Systems that process wireless spectrum information at a
fast pace and identify malicious devices that cause unintended
RF transmissions or change the balance of the wireless net-
work are the need of the hour. These concerns have crucial
implications and efforts like IARPA-SCISRS and DARPA-
RFMLS, which necessitate to perform blind signal analysis
coupled with spectrum sensing. These software platforms re-
quire testing systems whose requirements deviate significantly
from what is currently in prevalent use and data generation
platforms for training the RF ML models.

In this specific context of wireless system design, the devel-
opment process has been mostly dependent on the simulation
environments, and testing such systems has been mostly done
on real devices for performance/functional evaluations. But
even with real devices, it is challenging to fully represent a
scenario that the system will encounter on the field because of
limits on computing, the number of wireless devices required,
and signal requirements. Conventional industry-standard signal

https://github.com/ucsdwcsng/rfsynth

generators such as Keysight Pathwave signal generators [4],
Rohde & Schwarz WinIQSim2 [5] which have such capabil-
ities are also extremely costly. For example, if a designer
wants to test a system’s performance against interference
management and suppression, doing so with real devices can
be hard because of the lack of sufficient control over causing
interference in a specific time and frequency. An extension of
this problem is to blindly detect signals of interest in presence
of interference of various levels. These environment sensing
capability systems (ESCs) are very common in CBRS band [6]
operations and testing wireless software systems that perform
such functions are difficult due to the rigidity of current
platforms. In addition, the data requirements for the training
and testing of RF ML models are complex and hard to obtain.
This is due to the fact that data from real-time devices are
without labels and labeled data are not always representative
of the actual OTA data [7]. The fact that all these requirements
have to be scalable makes the entire process of data generation
and testing these software systems complex.

We solve this problem in two phases. In the first phase,
we developed a signal generation platform, Sig-Gen, which
can generate IQ of complex wireless spectrum along with
metadata in a simulation environment. In the next phase, we
extended this platform for performing long-duration (minutes-
hours) OTA testing based on some assumptions which will be
explained in later sections.

III. SIG-GEN ARCHITECTURE

Keeping in mind the functional specifications mentioned in
the previous sections, a Sig-Gen platform was developed and
it mainly satisfies the synthetic data generation requirements.
It has the following functional requirements:

• Emulate complex RF scenarios easily based on user-
defined configurations.

• Ground truth metadata report of the RF IQ generated.
• Comprehensive RF signal library with diverse modula-

tions and protocol signal.
• Generate large amounts of data easily with variations in

parameters for training and testing ML models.

A. Abstraction Levels

The following abstraction levels were used in the Sig-Gen
to generate the IQ for a specified RF environment scenario.

• Source: A radio signal emitting entity that can emit one
or more signals at the same time.

• Signal: A set of homogeneous energies with transmis-
sions following a specific parameter set. The homoge-
neous aspect here refers to the signal parameters used to
generate the energies.

• Energy : Fundamental building block of a signal. It can
be interpreted to be a unit similar to the data packet.

These notions make it easier for the end user to write input
configurations and are also a representative of how real-world
devices operate. An example scenario and the abstractions are
shown in the Figure1
For example, a single mobile phone does not emit one specific

Fig. 1. Abstraction levels used in Sig-Gen. The whole set of transmission
can be thought to be of from a single source and the individual energies are
demarcated through solid lines and the signals comprising of energies are
indicated through dashed lines.

signal. At any point, the mobile can be connected to Wi-Fi and
is also attached to an LTE base-station. This means that the
same device is emitting multiple signals at multiple bands at
different transmission intervals. The abstractions of energies,
signals, and sources is useful to characterize such a behavior.

B. Sig-Gen System generation Call flow

Generating a composite RF environment data with multiple
sources is achieved by emulating multiple RF chains that
contains a data source, modulator, a mixer (up-converter)
and is followed by a resample operation to make the signals
uniform in length. Even though [8] had developed a similar
architecture, it had only focused on using a single RF chain
for a single signal IQ file and did not support the placement
of multiple signals across multiple bands in the same IQ. To
generate the IQ for a complete RF environment with multiple
signals in a single IQ, a superposition/combining module that
glues all the activities of individual sources together into a
single IQ file is required. Also, just generating the individual
IQ per individual source will not be representative of what
occurs in the real world. So, the hardware imperfections, and
wireless channel effects are also added on top of each of the
data generated before combining all the signals. Finally, Sig-
Gen can be thought to have a receiver operating in a user-
defined frequency capturing the signal requested by the user
through the configuration.

C. RF and analog distortions

Consider the scenario where there is a single source emitting
three signals at three different frequencies. The signal genera-
tion call flow in the Sig-Gen follows the procedure as shown
in Figure 2. Assuming that we have extracted the necessary
information from the configuration that the user has given, the
Sig-Gen block will have inputs in the form that corresponds

to the abstraction level as mentioned previously, i.e. in terms
of energies, signals, and sources. The baseband signals are
generated from the library of signals called Atomics, explained
in the next section, and different kinds of RF imperfections
are added to the signal. The RF imperfections added are IQ
mismatch, frequency offset and DC offset.

Assuming that S1
k(n) is the kth signal needed to be produced

for the 1st source as provided in the example generation flow
Figure 2, the combined output in complex baseband is given
by:

Y[n] = S1k[n] · e−i2π(F 1
offset)t · eiφ

1
offset +DC1

offset (1)

where k represents the signal index (one of the Nsig signals
emitted by the source), F 1

offset is the center frequency offset
and the ϕ1

offset is the phase offset arising due to IQ imbalance
and DC1

offset is the gain added due to the DC addition in the
1st source. Then, in complex baseband, we also add a per-
signal channel by convolving the complex baseband signal
with a channel response:

Y[n] =

[
S1k[n] · e−i2π(F 1

offset)t · eiφ
1
offset +DC1

offset

]
∗ h1

k(n)

(2)
When superposing these multiple signals and multiple

sources together t form one single IQ, we first resample each
signal to the same target sample rate as shown in Figure 2 and
shift the center frequencies of each signal by e−i2πF l

ct. The
composite signal from a single source Y1(n) is given as,

Y1[n] =

Nsig∑
k=1

[
Slk[n] · e−i2πF l

ct

· e−i2π(F l
offset)t · eiφ

l
offset +DCl

offset

]
∗ hl

k(n)

(3)

where Nsig is the total number of signals from a single
source.The process is repeated for multiple sources and a
final IQ is generated after performing superpositions across
all sources. A receiver is conceived with a particular center
frequency and bandwidth. The final IQ output of the Sig-Gen
can be thought to be as the data that is captured by this receiver
with a specified bandwidth ’BW’ with a user-defined sample
rate.

The output signal after all these processes can be repre-
sented as

Y[n] =

Nsource∑
l=1

Nsig∑
k=1

[
Slk[n] · e−i2πF l

ct · e−i2π(F l
offset)t

· eiφ
l
offset +DCl

offset

]
∗ hl

k(n)

(4)

where hl
k(n) is the configured channel for the kth signal of

lth source to the receiver.

IV. SUBMODULES IN SIG-GEN

A. Atomic Library

The Sig-Gen generation module interacts with a signal
library called atomic signals which consists of basic modu-
lation signal generation classes and protocol binding signal
generation classes. To construct any complex RF scenario,
these atomic functions act as the fundamental building blocks.
Whenever a user wants to generate data that is :

• Binding to a specific modulation, and/or
• Binding to a specific protocol
The Sig-Gen creates instances of these atomic signal classes

and generates IQ data. Once the baseband modulation data is
generated by using the atomic library, these signals are further
processed as explained above by the Sig-Gen.

1) Signals in the Atomic Library: The atomic functions are
designed to be comprehensive in terms of a variety of signals
and flexible in terms of parameter space for each signal in
the library. The signals in the atomic library can be broadly
classified into:

• Vanilla signals which are plain modulated signals
• Protocol-adhering waveforms
• Anomalous signals
The complete list of signals in the atomic library is provided

in the following Table I

TABLE I
SIGNALS IN ATOMIC LIBRARY

Vanilla Signals Protocol Signals Anomalous Signals
Analog: AM, FM, SSB BLE DS
FSK family:
FSK, GFSK, CPFSK
MSK, GMSK

LTE Frequency hoppers

PSK family:
PSK, DBPSK, DQPSK WLAN 802.11 RF Emanations

QAM 5G NR
PAM GSM
ASK LoRa [9]
APSK Zigbee
OFDM

2) Traffic Types: The Traffic generation module generates
the transmission start times for the energies based on some
probability distributions when given a start and stop time of
signals, duration of each energy, and transmissions required
per second. These start times will act as the arrival instances
of the energies in a particular signal.

B. Forensics framework

A persistent problem with many data generation systems is
that there is no way of recording the metadata along with the
data generation process. A familiar format is the sigMF format
but sigMF is more suitable for captures instead of the data
generation process itself. So, a forensic framework that probes
the signal at certain important points along the generation
pipeline is put in place. The IQ data that is generated is
dumped in the form of ”.32cf”, a 32-bit complex float, and a
”JSON” metadata file is generated along with it. An example
metadata format is shown in Figure 3.

Input Config
Source 1 :
1. Signal A
2. Signal B
3. Signal C

Source 1

Ti
m

e

0

Source 1-
Signal 1

Source 1-
Signal 2

Carrier
frequency offser

Carrier
frequency offser

Carrier
frequency offser

DC offset

DC offset

Composite RF
signal

for Source 1 IQ

Composite RF
signal

for Source 1
Groundtruth

Freq

Ti
m

e

DC offset IQ Imbalance

IQ Imbalance

IQ Imbalance

Freq

Ti
m

e

Freq

Ti
m

e
Source 1-
Signal 3

Resample

Channel

Channel

Channel

Channel

Resample

ChannelCarrier
frequency offser DC offset Resample Channel

Channel

Carrier
frequency offser DC offset Channel Resample

ResampleIQ ImbalanceDC offsetCarrier
frequency offser

Cos(2πFc1t)

Cos(2πFc2t)

Cos(2πFc3t)

Baseband Signal

Fig. 2. Sig-Gen IQ generation flow: An example case of Sig-Gen call flow is shown where a user wants to generate RF IQ for a scenario with a single source
emitting 3 signals centered around three different center frequencies. The resulting final IQ contains all these signals at user-specified times and frequencies.

To enable this flow, a reporting mechanism is created.
The mechanism is flexible enough to add new entries to the
metadata field and can be plugged into any part of the signal
generation process to enable the addition of any new parameter
about that process for future reference or debugging purposes.

The mentioned metadata in Figure 3 is surface-level meta-
data. However, in certain scenarios, users would need in-depth
metadata. To achieve this feature, the system also outputs the
entire parameter structure that has all the parameters that were
used to generate the particular signal. This way, we solve the
issue of metadata at two levels, first by providing a coarse
level metadata through the ”.json” file which indicates the
time-frequency location bounds of the signal, and fine-tuned
metadata through ”.mat” files for providing the modulation or
protocol-specific parameters.

V. OVER THE AIR TESTING AND DATA GENERATION

In the previous sections, the necessity of the signal genera-
tion platform and the call flow of the signal generation were
presented in detail. In the effort to scale the system further and
enable real-time transmissions, Over-the-air testing is seen as
the next obvious step. To achieve this, a complicated way is
to generate the data through Sig-Gen and then port the data
to a place where the radios are connected, and then set up the
environment for transmission. This is extremely cumbersome
and is a logistical trouble that the user has to undergo. To
alleviate these, a unified platform that can generate both
simulated data and real-time OTA data in an automated manner
is conceived. The overall functional requirements that we tend
to fulfill are as follows:

• Ability to transmit the signals over the air.
• Automatically queue the signals/energies to be transmit-

ted with the appropriate radios.
• Ability to transmit for long hours.
• Have proper metadata for the OTA signals transmitted.

Fig. 3. Metadata that is generated from the Sig-Gen in JSON format. The
metadata consists of all three abstraction levels specified. The energy level data
with its Time-Frequency bounds are indicated by the label ”energy” and each
energy is provided with an instance name, here ”Energy1” and ”Energy2”.
These energies cumulatively form a signal, here ”Signal1” and the the source
that emits this particular ”signal1” is indicated through the tag ”Source”, here
”source1”

Fig. 4. RF Synth architecture: An SDR interface that can relay the IQ
generated through the Sig-Gen along with metadata.

VI. RFSYNTH : SYSTEM ARCHITECTURE & DESIGN
CHOICES

The proposed RFSynth platform has a software-defined
radio interface and it would act as a linking module between
the Sig-Gen and the SDRs as shown in Figure4.

A. Extending Sig-Gen

To enable over-the-air transmissions, the Sig-Gen data path
was modified in some places. Although the core aspects of the
Sig-Gen remains the same,these modifications include,

1) Since we are already transmitting the data through the
hardware and channel, the additional hardware imperfec-
tions and channel application that were done previously
were removed.

2) The superposition module is also bypassed to create ’N’
IQ files, where ’N’ is the total number of signals one
wants for a particular experiment. This is done to queue
the signals as it is and send them over the air. Thus, any
RF scenario that the user wants is obtained once these
IQs are transmitted.

3) One of the major reasons for developing the system is
to enable long hours of spectrum activity in a particular
band. To enable this, many hours’ worth of data cannot
be produced in one shot before shipping the data for
transmission to the radios due to limits in computing and
memory. To overcome this, the system operates on the
assumption that all the energies in the signal contain the
same payload. This makes data generation a lot easier
as only a small period worth of samples need to be
generated and stored but it can be used for long hours of
transmission. In other words, the same payload of the
requested modulation or protocol signal is transmitted
for long hours.
An example comparison showing the memory consump-
tion when the test data vector is generated without using
the assumption and after using the assumption is given
in the following table II.

B. Sources to radio mapping

To map the signals that are created from the configuration
file automatically to the transmission radios that are set up, a
source allocation algorithm is also provided as a part of the
call flow. This reduces the user’s effort to run tests as the user
no longer needs to queue the signal manually. This becomes

TABLE II
EXAMPLE MEMORY USAGE COMPUTATION WITH AND WITHOUT

ASSUMPTION ON PAYLOAD

Attributes
Without using
the assumption
of same payload

After the
assumption of
same payload

Total time of IQ to be
generated 2000 (secs) 2000 (secs)

Sample Rate 100 MHz 100 MHz
Total samples to be
generated 200 Giga samples 200 Giga Samples

Total file size 1600 GB

80 MB*
(Assume energy
duration of
100 ms)

especially complex when the testing is done for spectrum
sensing applications because of the involvement of multiple
radios and multiple signal transmissions. The steps followed
in the radio allocation are as follows :

1) Find the maximum number of simultaneous signals
present.

2) Assert if the number of simultaneous signals is greater
than the number of transmitter resources available.

3) Sort the signals according to their start times.
4) Setup a radio availability buffer that holds the earliest

available times of all the radio resources and sets all its
entries to be zero for the first iteration, indicating all the
radios are available at from time 0 secs for transmission.
Label the radios from 1 through N, N being the number
of available radios.

5) Assign each signal to a radio based on the earliest
availability of any of the N radios and update the
resource buffer with the end time corresponding to that
particular signal.

6) Assert if the start time of the next signal to be transmit-
ted is lesser than the maximum of the end times in the
buffer, indicating that an assignment cannot be made for
a signal.

7) Continue the process from step 5 to step 6 until all
signals are assigned.

Once the signals to transmit radio mapping are done, a
schedule file of ”.csv” format is created which contains the
following :

1) Location of energy IQ to be transmitted
2) Tx radio in which the signal is to be transmitted
3) Time in which the energy needs to be transmitted
4) frequency in which the energy needs to be transmitted

Once the test is triggered, first the IQ samples are generated
using the configuration file which is provided to the Sig-
Gen by the user and the SDR interface will loop through
this schedule file and will transmit the data according to the
frequency and time information as mentioned in the schedule
file. This way, the whole process of transmitting signals over
the air is automated end to end.

Input Config
Source 1 :
1. Signal A
2. Signal B
Source 2 :
1. Signal C

Source 1

Sig-Gen with modified call flow

Resample

Resample

Source to
Radio

mapping

Source 2

Transmission
Schedule file

(.csv)

IQ data of all
signals(.32cf)

metadata file
(.json)

Forensics
1. radios
2. '.mat' sig-gen

SDR
Interface OTA Testbed

Fig. 5. RFSynth signal and metadata generation flow: As one can notice, the hardware imperfections and channel additions are removed. The source of radio
mapping outputs forensic information about radios and interacts with the SDR interface for scheduling the transmission of the signals using SDRs.

C. Metadata data propagation

In the Sig-Gen, since over-the-air transmissions are not tak-
ing place, the generation of metadata is fairly straightforward
once the signals to be generated are put into sources. However,
when the same operation is ported to Over-the-air mode, the
time at which the signals leave the antenna is difficult to
predict.

To solve the problem of identifying the moment at which
the signal leaves the antenna, the metadata is propagated to the
SDR interface. The system then synchronizes the metadata to
the POSIX time of the system when the energy was transmitted
as the average precision of the POSIX clock is around 1 ms
to 1 µs. At the end of transmission, a count of the number of
energies to be transmitted is displayed along with metadata.
This metadata will be identical in terms of all other contents
except the time start and time stop metric whose values will
extracted from the POSIX clock. This entire generation and
transmission process is detailed in Figure 5.

Thus, combining the assumption on payloads of energy and
automatic signal to transmitter radio mapping, data generation,
and testing for long hours is enabled with easy data augmen-
tation.

VII. IMPLEMENTATION

The data-generation system described in this work is imple-
mented three modular parts to allow simulated and OTA data-
generation, while allowing the framework to be extended with
new signal types. The first part is the Sig-Gen software, that
allows configurable simulated data generation with accurate
metadata. Second, the SDR interface that extends Sig-Gen
into RFSynth. And finally, the SDR hardware platform that
performs the actual transmission.
Sig-Gen is implemented in MATLAB with a framework to
extend the library with new signals. The parts of the system

described in Figure 2 are implemented as self-describing
classes, i.e., they can be serialized into metadata when needed.
This allows abstractions, non-ideal transforms (like CFO), and
data-generation parameters to be easily codified into metadata
for ground to labels and forensics.
SDR Interface: For ease of use and repeatability, we use
the GNURadio [10] and the UHD drivers [11] to implement
the SDR interface. The interface uses artifacts generated by
the Sig-Gen to control SDRs and stream data to them in a
tightly time-controlled manner. Transmission time of signals
and energies are exactly controlled using timed commands that
instruct the FPGA to start and stop streams at nanosecond
precision [12]. For performance reasons, the interface uses a
separate thread for each SDR.
OTA Testbed is the SDR platform used to transmit generated
signals. In our experiments, we use 6 USRP N320 radios
attached to a server through a 100G switch. Each radio has
an instantaneous bandwidth and sample rate of 100 MHz.
Each transmitter is bound to the SDR interface and transmits
only one signal at a time, simultaneous transmissions requires
multiple radios. This platform is similar to other USRP-based
testbeds like POWDER, COSMOS, and Colosseum [13]. As
such, RFSynth can be deployed as a service on any of these
testbeds as they provide the necessary software drivers and
tools.

VIII. EXPERIMENTAL SCENARIOS

To qualitatively evaluate the advantages of the RFSynth
platform, this section discusses four case studies in which
the platform was used extensively. The following case studies
exemplify the flexibility the platform offers.

A. Case Study 1: Recreating RF environments

A simple case study to show the capability of the system
was undertaken and it was to closely recreate a spectrum band

TABLE III
PARAMETERS USED FOR COLLECTION AND RE-CREATING 2450 MHZ

SPECTRUM

Parameter Collect Param Values Recreate Param Values
Centre Frequency 2450 MHz baseband
Sampling rate 100 MHz 100 MHz
Capture condition Indoor environment Rayleigh
Hardware used SM200C Signal hound NA

using the RFSynth platform which was observed by the user.
The main application of the feature is that it would be easier
to do a quick check functionality check of the system in the
recreated band than using hardware every time. This is mainly
aided by the metadata that comes along with the data IQ.

To showcase this feature, a capture of the 2450 MHz
spectrum was made using the signal hound SM200C [14] as
shown in 6. The 2450 MHz is a heavy activity band with
multiple bands of Wi-Fi, BLE, and Zigbee Co-existing in
the band. It is a good band to test algorithms that tackle
multi-protocol co-existence and interference.Figure 7 shows
the recreated version of the spectrum using Sig-Gen alone.
It can be inferred that it was possible to recreate the traffic
of Wifi OFDM and Wifi Direct spread spectrum very closely
along with the LO leakage. All the features including the Wi-
fi OFDM, DSSS, and BLE are exactly matched with their
corresponding frequencies.

B. Case Study 2: Energy detection algorithm design

The problem of detecting the presence of RF signals scales
in complexity if the energy detection has to be performed
blindly because of system throughput bottleneck. An inter-
esting use of Sig-Gen and RFSynth has been in the design of
blind energy detection system which was recently proposed,
searchlight [15]. The main functionality of the detector is to
identify the center frequency of the energy and reference time,
which is the average of start and end times of the energy, and
draw a bounding box. To test the sensitivity of the detector’s
performance when two energies are close to one another,
RFSynth’s agile capability of placing energies in time and
frequency grid with ease was used. An example of a spectrum
designed to test the performance of [15] and the output with
bounding boxes are also shown in Figure 8.

C. Case study 3: RF ML dataset generation (Blind Modulation
classification problem)

Providing context to the raw RF IQ data captured within
a band of the spectrum requires the characterization of the
signals in the desired bands. To blindly characterize signals,
automatic modulation classification algorithms are run and
the decision is fed back to the main system based on which
the subsequent decisions are taken. Classifying the signals
which are blindly captured based on modulation is a difficult
problem and continuous efforts have been going on in that
front. Approaches for this purpose include the use of wavelet
analysis [16], cyclostationary analysis of signals [17], and
also RF machine learning [18]. To train and test the machine

learning models for modulation classification, a variety of
data sets have also been captured and are widely used. Some
examples of such datasets include RFMLS datasets, RF finger-
printing data set by [19] and Radio ML 2016.04C, 2018.1A
by [20]. The following section does a comparative study of
the parameter space that was varied in radio ML datasets and
the flexibility that the Sig-Gen and RFSynth platforms offered
to its users for generating data at scale.
Comparison of parameter space between common RF
ML datasets and RFSynth-based data set generation: The
prevalent dataset used for benchmarking the performance
of machine learning models in automatic modulation
classification is RadioML datasets. For the comparison, the
radioML2016.04c was chosen and the comprehensiveness
of the parameter space of the dataset is compared with the
parameter space capabilities of the Sig-Gen.

A surface-level comparison was made first by seeing the
different types of modulations which is supported in ra-
dioML2016.04c and the signals present in the atomic library.
Further on, the number of SNR data points which has been
recorded for each modulation is compared against the frame-
work’s flexibility in IV.

TABLE IV
COMPARISON BETWEEN RML 2016.04C.MULTISNR WITH RFSYNTH.

* - INCLUDES PROTOCOL SIGNALS ALSO.

Parameter RMLdataset RFSynth capability
Modulations 11 27*
Protocols Not Present Support for LTE, 5G

NR, BLE, LoRA, Zig-
bee, GSM

SNR points -20:18 (Not all modu-
lations have the same
points)

Arbitrarily configurable

D. Case study 4: End to End testing for spectrum information
processing systems

The wireless spectrum is vast and is filled with activities
by countless devices. As a result, the wireless spectrum is
susceptible to various types of interference and unauthorized
access, posing security threats to legitimate users and critical
communication systems. To address these challenges, secu-
rity measures incorporating spectrum sensing algorithms have
emerged. Testing these systems is not trivial as we have to
keep moving across bands, creating spectrum activities. The
testing requirements for such a system are as follows :

1) Simultaneous transmissions at different bands of fre-
quencies.

2) Testing for long hours
3) Ability to generate agile LPI signals like snugglers.
4) Provide metadata for transmissions.

The easy modular setup of Sig-Gen coupled with RFSynth was
used effectively with little modification for queuing multiple
generation configurations one after the other automatically at
different bands of the spectrum. As mentioned in the energy

Fig. 6. The activity around centre frequency of 2.4 GHz spectrum captured through a USRP N320 radio is shown in this spectrogram. The band contains
multiple signals including DSSS / OFDM Wi-Fi along BLE and Zigbee.

Fig. 7. The activity in 2.4 GHz band recreated using Sig-Gen platform. One can notice similarity spectrum activity across frequencies when compared to
Figure 6 except for the image frequencies of the Wi-Fi. This is a baseband representation of the Figure 6.

detection case study, the ability to place signals at any time-
frequency position was leveraged to create abstract signals like
snugglers and transmit them. One such example is provided
in the Figure 9 where anomalous snuggler type signals were
created in 800 MHZ - 900 MHz LTE band and the snuggler
tries to move along the LTE signal with it in the same band.
The spectrum information system was tested with this data
vector to see if it could identify these transmissions quickly.
An example metadata for one of the tests performed using the
RFSynth platform with time synchronization achieved between
Tx and Rx machines using Posix time is provided below.

1) Energy level metadata example:

1 {
2 "report_type": "energy",
3 "instance_name": "bBiaaUMmS",
4 "time_start": 1684952693.346253,
5 "time_stop": 1684952693.348253,
6 "freq_lo": 2481.875,
7 "freq_hi": 2482.125,
8 "timeLength_s": 0.00200,

Fig. 8. Spectrogram of a baseband test vector with bounding boxes after
being processed using SearchLight [15]. The center frequencies of energies
detected using SearchLight are marked using white dots.

Fig. 9. Spectrogram shows an IQ capture centered around 850 MHz shwing
an Over the Air snuggler type anomalous signal transmission using RFSynth.
The snuggler signal marked in yellow tags alongside a common LTE activity.

9 "bandwidth_Hz": 0.25
10 }

2) signal level metadata example

1 {
2 "report_type": "signal",
3 "instance_name": "bBiaaUMm",
4 "protocol": "unknown",
5 "modality": "single_carrier",
6 "modulation": "qam16",
7 "activity_type": "overt_new",
8 "time_start": 1684952693,
9 "time_stop": 1684952803,

10 "freq_lo": 2481.875,
11 "freq_hi": 2482.125,
12 "rx_center_freq": {

13 "rx1": 2.482E+9
14 },
15 "reference_time": 65.001,
16 "reference_freq": 2482,
17 "timeLength_s": 110.002,
18 "bandwidth_Hz": 0.25
19 }

It also contains the set of energies which are part of the
signal but considering space constraints, it is omitted.

3) source level metadata

1 {
2 "report_type": "source",
3 "device_origin": "default",
4 "instance_name": "default0",
5 "tx": [],
6 "locationXYZ_m": [0,0,0],
7 "outputSamplingRate_Hz": 1.0E+8,
8 "channelModel": "IDENTITY",
9 "nSignal": 1,

10 "signal_set": [
11 "bBiaaUMmSQmgIfLw0e"
12]
13 }

This case study showcases a simple example of how RF-
Synth can be leveraged to test spectrum sensing systems which
detect anomalous RF activities. However, more complicated
testing such as interference and co-existence testing can also
be conducted very easily using the mechanism established in
this section.

IX. FUTURE WORK

The development of Sig-Gen first and from Sig-Gen to
RFSynth was a natural progression as the use case/necessity
presented itself. After extensive use of the system, we found
that there are certain design advancements that can be make
this system more robust. The design choice of having the
same payload for all energies of the signal posed bottlenecks
when we wanted to generate test cases for the detection of
RF Emanations which generally occur with different payloads
and are always-on. This in addition to the fact that the system
operates by generating all the required IQ first before initiating
the transmissions increases the latency and storage. If this
can be changed to an IQ streaming mechanism (procedural
generation and transmission), then it can support signals that
are always-on and can make the spectrum activity generation
even more realistic.

X. CONCLUSION

In this paper, we introduce RFSynth, a comprehensive
system designed to address gaps in data generation and testing
platforms within wireless systems. Together with Sig-Gen,
RFSynth aims to provide a robust solution to the challenges
currently faced in this domain.

Specifically, our focus was on resolving the lack of a
comprehensive data generation platform that integrates various

signal libraries. We propose a method for generating data over-
the-air (OTA) and synchronizing metadata using the RFSynth
interface.

To evaluate the efficacy of our proposed solution, we con-
ducted qualitative case studies. The results of these evaluations
demonstrate the effectiveness and practical applicability of the
RFSynth system in addressing the challenges encountered in
wireless systems testing and data generation.

XI. ACKNOWLEDGEMENTS

This paper is based upon work supported in part by
the Office of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity (IARPA),
via [2021-2106240007]. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed
or implied, of ODNI, IARPA, or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copy-
right annotation therein.

REFERENCES

[1] William H. Clark IV. The Importance of Data in RF Machine Learning.
PhD thesis, Virginia Polytechnic Institute and State University, 2022.

[2] RF Data Factory. https://www.rfdatafactory.com. Last accessed on 10
Mar 2023.

[3] Signal Metadata Format (SigMF) Development Team. SigMF. https:
//github.com/sigmf/SigMF. Last accessed on 10 Mar 2023.

[4] keysight pathwave signal generator. https://www.keysight.com/us/en/
assets/7018-01538/brochures/5989-6448.pdf. Accessed: 2023-05-21.

[5] Rohde and schwarz winiqsim2 system. https://www.rohde-schwarz.com/
webhelp/RS WinIQSIM2 Help/Content/welcome.htm. Accessed: 2023-
05-21.

[6] Federal Communications Commission. ”FCC 18-149: Report and Order
In the Matter of Promoting Investment in the 3550-3700 MHz Band”.
https://docs.fcc.gov/public/attachments/FCC-18-149A1.pdf.

[7] Robert D. Miller, Silvija Kokalj-Filipovic, Garrett Vanhoy, and Joshua
Morman. Policy based synthesis: Data generation and augmentation
methods for rf machine learning. In 2019 IEEE Global Conference on
Signal and Information Processing (GlobalSIP), pages 1–5, 2019.

[8] Timothy James O’Shea, Tamoghna Roy, and T. Charles Clancy. Over-
the-air deep learning based radio signal classification. IEEE Journal of
Selected Topics in Signal Processing, 12(1):168–179, 2018.

[9] Zhenqiang Xu, Shuai Tong, Pengjin Xie, and Jiliang Wang. From
demodulation to decoding: Toward complete lora phy understanding and
implementation. ACM Trans. Sen. Netw., 18(4), jan 2023.

[10] GNU Radio Website, accessed March 2024.
[11] Ettus Knowledge Base. Uhd and usrp user manual — ettus knowledge

base,, 2016. [Online; accessed 22-June-2018].
[12] Tomoya Nakahama, Yoji Yamada, and Suguru Kameda. Example gnu

radio implementations of phase alignment between usrp devices. IEICE
Technical Report; IEICE Tech. Rep., 120(238):74–81, 2020.

[13] Leonardo Bonati, Pedram Johari, Michele Polese, Salvatore D’Oro,
Subhramoy Mohanti, Miead Tehrani-Moayyed, Davide Villa, Shweta
Shrivastava, Chinenye Tassie, Kurt Yoder, et al. Colosseum: Large-scale
wireless experimentation through hardware-in-the-loop network emula-
tion. In 2021 IEEE International Symposium on Dynamic Spectrum
Access Networks (DySPAN), pages 105–113. IEEE, 2021.

[14] Signal Hound. ”SM200C — 20 GHz Real-time Spec-
trum Analyzer with 10GbE”. https://signalhound.com/products/
sm200c-20-ghz-real-time-spectrum-analyzer-with-10gbe/.

[15] Richard Bell, Kyle Watson, Tianyi Hu, Isamu Poy, fred harris, and
Dinesh Bharadia. Searchlight: An accurate, sensitive, and fast radio
frequency energy detection system. In MILCOM 2023-2023 IEEE
Military Communications Conference (MILCOM). IEEE, 2023.

[16] Cheol-Sun Park, Jun-Ho Choi, Sun-Phil Nah, Won Jang, and Dae Young
Kim. Automatic modulation recognition of digital signals using wavelet
features and svm. In 2008 10th International Conference on Advanced
Communication Technology, volume 1, pages 387–390, 2008.

[17] Chad M. Spooner, Apurva N. Mody, Jack Chuang, and Josh Petersen.
Modulation recognition using second- and higher-order cyclostationarity.
In 2017 IEEE International Symposium on Dynamic Spectrum Access
Networks (DySPAN), pages 1–3, 2017.

[18] Timothy J O’Shea, Johnathan Corgan, and T. Charles Clancy. Convolu-
tional radio modulation recognition networks, 2016.

[19] Samer Hanna, Samurdhi Karunaratne, and Danijela Cabric. Open set
wireless transmitter authorization: Deep learning approaches and dataset
considerations. IEEE Transactions on Cognitive Communications and
Networking, 7(1):59–72, 2021.

[20] Deepsig dataset. https://www.deepsig.ai/datasets. Accessed: 2023-05-21.

https://www.rfdatafactory.com
https://github.com/sigmf/SigMF
https://github.com/sigmf/SigMF
https://www.keysight.com/us/en/assets/7018-01538/brochures/5989-6448.pdf
https://www.keysight.com/us/en/assets/7018-01538/brochures/5989-6448.pdf
https://www.rohde-schwarz.com/webhelp/RS_WinIQSIM2_Help/Content/welcome.htm
https://www.rohde-schwarz.com/webhelp/RS_WinIQSIM2_Help/Content/welcome.htm
https://docs.fcc.gov/public/attachments/FCC-18-149A1.pdf
https://signalhound.com/products/sm200c-20-ghz-real-time-spectrum-analyzer-with-10gbe/
https://signalhound.com/products/sm200c-20-ghz-real-time-spectrum-analyzer-with-10gbe/
https://www.deepsig.ai/datasets

	Introduction
	Background: Testing and Data requirements for spectrum information systems
	Sig-Gen Architecture
	Abstraction Levels
	Sig-Gen System generation Call flow
	RF and analog distortions

	Submodules in Sig-Gen
	Atomic Library
	Signals in the Atomic Library
	Traffic Types

	Forensics framework

	 Over the air Testing and Data generation
	RFSynth : System Architecture & design choices
	Extending Sig-Gen
	Sources to radio mapping
	Metadata data propagation

	Implementation
	Experimental Scenarios
	Case Study 1: Recreating RF environments
	Case Study 2: Energy detection algorithm design
	Case study 3: RF ML dataset generation (Blind Modulation classification problem)
	Case study 4: End to End testing for spectrum information processing systems

	Future Work
	Conclusion
	Acknowledgements
	References

