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Abstract—Mobile devices increasingly function as wireless
tracking beacons. Using the Bluetooth Low Energy (BLE) pro-
tocol, mobile devices such as smartphones and smartwatches
continuously transmit beacons to inform passive listeners about
device locations for applications such as digital contact tracing
for COVID-19, and even finding lost devices. These applications
use cryptographic anonymity that limit an adversary’s ability
to use these beacons to stalk a user. However, attackers can
bypass these defenses by fingerprinting the unique physical-layer
imperfections in the transmissions of specific devices.

We empirically demonstrate that there are several key chal-
lenges that can limit an attacker’s ability to find a stable physical
layer identifier to uniquely identify mobile devices using BLE,
including variations in the hardware design of BLE chipsets,
transmission power levels, differences in thermal conditions, and
limitations of inexpensive radios that can be widely deployed
to capture raw physical-layer signals. We evaluated how much
each of these factors limits accurate fingerprinting in a large-scale
field study of hundreds of uncontrolled BLE devices, revealing
that physical-layer identification is a viable, although sometimes
unreliable, way for an attacker to track mobile devices.

I. INTRODUCTION

The mobile devices we carry every day, such as smart-
phones and smartwatches, increasingly function as wireless
tracking beacons. These devices continuously transmit short-
range wireless messages using the Bluetooth Low Energy
(BLE) protocol. These beacons are used to indicate proximity
to any passive receiver within range. Popular examples of
such beacons include the COVID-19 electronic contact tracing
provided on Apple and Google Smartphones [10] as well
as Apple’s intrinsic Continuity protocol, used for automated
device hand-off and other proximity features [1].

However, by their nature, BLE wireless tracking beacons
have the potential to introduce significant privacy risks. For
example, an adversary might stalk a user by placing BLE
receivers near locations they might visit and then record the
presence of the user’s beacons [3], [37]. To address these
issues, common BLE proximity applications cryptographically
anonymize and periodically rotate the identity of a mobile
device in their beacons. For instance, BLE devices periodically
re-encrypt their MAC address, while still allowing trusted
devices to determine if these addresses match the device’s
true MAC address [6]. Similarly, COVID-19 contact tracing
applications regularly rotate identifiers to ensure that receivers
cannot link beacons from the same device over time [2].

While these mechanisms can foreclose the use of beacon
content as a stable identifier, attackers can bypass these
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countermeasures by fingerprinting the device at a lower layer.
Specifically, prior work has demonstrated that wireless trans-
mitters have imperfections introduced in manufacturing that
produce a unique physical-layer fingerprint for that device
(e.g., Carrier Frequency Offset and I/Q Offset). Physical-layer
fingerprints can reliably differentiate many kinds of wireless
chipsets [14], [9], [18], [35], [29], [21], [28], [8], including a
recent attempt to distinguish 10,000 WiFi [19] chipsets.

To the best of our knowledge, no prior work has evaluated
the practicality of such physical-layer identification attacks
in a real-world environment. Indeed, prior to BLE track-
ing beacons, no mobile device wireless protocol transmitted
frequently enough—especially when idle—to make such an
attack feasible. Additionally, there is no existing BLE finger-
printing tool that can measure the physical-layer imperfections
in BLE transmissions (i.e., CFO and I/Q offset) accurately.
Prior techniques for fingerprinting either provide low precision
fingerprints because they use short duration (e.g., transient)
signal features, or provide high precision fingerprints but
require long duration signal features which exist only in
protocols like WiFi but not in BLE. Our first contribution is a
tool that uses a novel method to recover these imperfections
by iteratively adding imperfections to a re-encoded clean copy
of a received packet, until they match the imperfections of the
received packet over the air (Section III).

Our next contribution is an evaluation of how practical it is
for an attacker to track BLE-beaconing devices using their RF
fingerprint. Namely, using lab-bench experiments, we identify
four primary challenges to identifying BLE devices in the
field: (1) BLE devices have a variety of chipsets that have
different hardware implementations, (2) applications can con-
figure the BLE transmit power level, resulting in some devices
having lower SNR BLE transmissions, (3) the temperature
range that mobile devices encounter in the field can introduce
significant changes to physical-layer impairments, and (4) the
low-cost receivers that an attacker can use in the wild for RF
fingerprinting are not significantly less accurate than the tools
used in prior studies [9].

Our final contribution is a set of field experiments to eval-
uate how significantly these challenges diminish an attacker’s
ability to identify mobile devices in the field. We leverage
the fact that BLE tracking beacons are already used on many
mobile devices to perform an uncontrolled field study where
we evaluate the feasibility of tracking BLE devices when they
are operating in public spaces where there are hundreds of
other nearby devices. To the best of our knowledge, our work
is the first to evaluate the feasibility of an RF fingerprinting



attack in real-world scenarios.
We show that even when there are hundreds of devices we

encountered in the field, it is still feasible to track a specific
mobile device by its physical-layer fingerprint. However, we
also observe that certain devices have similar fingerprints
to others, and temperature variations can change a device’s
metrics. Both of these issues can lead to significant misidenti-
fication rates. In summary, we find that physical layer tracking
of BLE devices is indeed feasible, but it is only reliable under
limited conditions, and for specific devices with extremely
unique fingerprints, and when the target device has a relatively
stable temperature. The dataset and code that we used to
perform this evaluation can be found at:

https://github.com/ucsdsysnet/blephytracking.git

II. BLE DEVICE TRACKING THREAT MODEL

In this section we describe the threat model of location
privacy attacks on BLE-enabled mobile devices. Then, we
demonstrate how location privacy attacks are a significant
threat today because popular mobile devices continuously, and
frequently, transmit BLE advertisements.

A. Threat model: Passively fingerprinting BLE transmissions

An attacker wants to detect when their target—a user with a
mobile device—is present at a specific location (e.g., a room in
a building). To do so, first the attacker must isolate the target
to capture a fingerprint of its wireless transmissions. Then it
must find features that uniquely identify the target, namely the
unique physical-layer features of the device’s BLE transmitter
hardware. Then, the attacker sets up a receiver in the location
where they want to see if the transmitter is there and passively
sniffs for the target’s BLE transmissions. They will know
when the target device is near the receiver when it captures
one or more packets that matches the target’s physical layer
fingerprint. The more frequently the BLE device transmits,
the more likely the attacker is to receive a transmission if
a user passes by. Also, the more accurate the fingerprinting
technique is, the better the attacker can differentiate the target
from other nearby devices. Fingerprinting bypasses MAC ad-
dress randomization [7], [26], BLE’s existing defense against
tracking.

To perform a physical-layer fingerprinting attack, the at-
tacker must be equipped with a Software Defined Radio
sniffer: a radio receiver capable of recording raw I/Q radio
signals. Although, as we show in Section IV-D, it is sufficient
to use a modest hobbyist-level SDR (∼$150).

B. Extent of threat: Popular mobile devices are vulnerable

Increasingly, mobile devices are adding BLE beacons to
provide new features. Most notably, during the COVID-19
pandemic, governments have installed software on iPhones
and Android phones to send constant BLE advertisements
for digital contact tracing: devices listen for nearby trans-
missions to determine if and for how long another device
was nearby. Also, Apple and Microsoft operating systems
have recently added BLE beaconing to their devices for two

Product OS # of adverts/minute

iPhone 10 iOS 872
Thinkpad X1 Carbon Windows 864
MacBook Pro 2016 OSX 576
Apple Watch 4 iOS 598
Google Pixel 5∗ Android 510
Bose QC35 Unknown 77
∗Only beacons with COVID-19 contact tracing enabled.

TABLE I: BLE beaconing behavior of popular mobile devices.

inter-device communication features: lost device tracking, and
seamless user switching between devices (e.g., Apple’s Conti-
nuity Protocol, Microsoft’s Universal Windows Platform) [5].
Therefore, BLE beacons are now common on many mobile
platforms, including: phones, laptops, and smartwatches.

Fingerprinting and tracking a BLE device requires the de-
vice to act like a tracking beacon: it must transmit continuously
and frequently. We observed the BLE behavior of popular
devices to determine if they transmit continuously, and how
frequently they transmit if they do. Specifically, we isolated
six popular devices in a Faraday cage—ensuring they were the
source of the transmissions—and we used an SDR sniffer to
collect all BLE advertisements (i.e., BLE beacons) transmitted
on any of the three advertising channels.

Mobile devices send BLE beacons continuously: We ob-
served continuous BLE beaconing from all the six mobile
devices shown in Table I. Even when all of these mobile
devices have their screens off (e.g., they are in their user’s
pocket) they all continuously transmit BLE beacons. Indeed,
this is a feature that is necessary for the proper function of
the BLE-based applications on these devices (e.g., contact
tracing). Continuous beaconing is a significant new threat
compared to the behavior of other protocols on mobile devices
that only transmit intermittently (e.g., periodic WiFi scanning).

Mobile devices send hundreds of BLE beacons per minute:
Table I also shows the average number of BLE beacons (i.e.,
BLE advertisements) we observed per minute from each de-
vice. We observe that all of these devices transmit frequently—
hundreds of packets per minute—even when the device is
otherwise idle (e.g., screen off). Transmitting hundreds of
advertisements per minute makes it feasible to produce a
physical-layer fingerprint quickly: even if the device is in range
of the sniffer for a few seconds (Section V).

III. BLE TRACKING TOOLKIT

In this section, we describe a toolkit to evaluate if an
attacker can perform a BLE tracking attack based on physical-
layer fingerprinting. First, we describe how BLE produces a
similar physical-layer fingerprint to other wireless protocols.
Then, we describe the unique challenges of fingerprinting
BLE transmissions, and therefore why existing fingerprinting
techniques do not work on BLE transmissions. Next, we
describe a new approach to fingerprinting BLE devices using
a novel joint imperfection estimation technique. Finally, we
describe how an attacker can use a sniffer to track a specific
device by detecting if its fingerprint matches one of the BLE
devices nearby the sniffer.
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Fig. 1: Architecture of WiFi/BLE combo chipsets

A. BLE has WiFi-like signal imperfections

Physical layer fingerprinting relies on each BLE radio
having unique hardware imperfections introduced by manu-
facturing variations in its transmitter chain. Different types of
imperfections are introduced by different transmitter architec-
tures. Therefore, we need to understand the architecture of a
typical BLE chipset to understand what imperfections we need
to fingerprint.

We investigated the architecture of several BLE chipsets
used in popular mobile devices, and found that WiFi and BLE
are often integrated into the same device. Also, internally,
they share the same 2.4 GHz I/Q frontend. (Figure 1). This
architecture, known as a “combo chipset” is desirable for
mobile devices because it reduces the device’s overall size
and power consumption, and it serves as a point to synchronize
both protocols’ 2.4 GHz transmissions, so they do not interfere
with each other.

A consequence of this hardware design choice is that BLE
transmissions contain the same hardware imperfections as
WiFi. The imperfections are introduced by the shared I/Q fron-
tend of the chipset (Figure 1). They result in two measurable
metrics in BLE and WiFi transmissions: Carrier Frequency
Offset (CFO) and I/Q imperfections, specifically: I/Q offset
and I/Q imbalance. Prior work demonstrated that these metrics
are sufficient to uniquely fingerprint WiFi devices [9]. The
following describes how each of these metrics are calculated
and how they result from manufacturing variations:

CFO: It is an offset in the carrier frequency generated by
the RF frontend’s local oscillator. The carrier frequency is
ideally exactly the center frequency of the channel in use.
However, imperfections in the radio’s local oscillator, a crystal
oscillator, yields a unique CFO added to every transmission.
Crystals cut in different ways yield different tolerances in how
much an individual crystal’s frequency can deviate from the
true value it was to produce for. This imperfection manifests
as CFO because the local oscillator is mixed with the baseband
signal (e.g., WiFi or BLE) in the RF frontend, so it can be
transmitted; thereby, carrying the crystal’s imperfection as a
feature in the transmission.

I/Q imperfections: These are a result of the following two
phenomena. I/Q Offset is created by two different imperfec-
tions in the RF frontend: (1) the carrier frequency signal
leaking through the mixer into the transmitted signal, or (2) the
baseband signal having a DC offset. I/Q offset results in a fixed
complex term added to each received I/Q sample (i.e., a shift in
the center of the constellation). I/Q Imbalance occurs because
of a mismatch between the parallel analog components of the
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Fig. 2: Length of known samples in BLE and WiFi packets.

RF chain in I (in-phase) and Q (quadrature) signal paths. This
results in asymmetry in the phase and amplitude of received
I/Q samples.

B. BLE is more difficult to fingerprint than WiFi

Measuring transmitter imperfections is significantly more
challenging for BLE transmissions than it is for WiFi transmis-
sions. The problem is, BLE signals are Gaussian Frequency
Shift Keying (GFSK) waveforms that do not require accu-
rately correcting CFO and I/Q imperfections for decoding.
Conversely, WiFi signals are wideband multi-carrier wave-
forms, therefore their decoding algorithm requires accurately
correcting for CFO and I/Q imperfections for decoding.

As a result of this issue, BLE packets contain fewer known
“training” samples used for measuring imperfections than
WiFi (Figure 2). BLE packets have only 8 training samples,
while WiFi packets have 320 training samples. BLE receivers
use these symbols to implement very coarse grained CFO
correction. Namely, they average the two frequencies (sym-
metric positive and negative frequencies are used to represent
0 and 1 symbols) in BLE’s training sequence to produce a
coarse grained average CFO [34]. Indeed, with only 8 samples
at BLE’s 1 MHz sample rate, the theoretical limit of CFO
accuracy is 2 kHz assuming 3 degree phase noise, even at
high SNR (40 dB).

To make matters worse, inaccurate coarse compensation of
CFO significantly affects our ability to measure I/Q imper-
fections. Inaccurately compensating CFO will result in time-
dependent phase shift distorting the I/Q constellation, making
it challenging to accurately estimate I/Q imperfections.

Prior fingerprinting techniques developed for other protocols
are not capable of overcoming these challenges. Therefore,
prior approaches can not be used to fingerprint BLE [39], [9],
[23], [17], [35], [27], [31], [16].

Another approach to fingerprinting BLE transmissions
would be to use neural networks. Although neural networks
can address these challenges, we did not use them in this work
because of the following limitations: (1) Neural networks make
it difficult to determine the significance and distinguishably of
each type of hardware imperfection (e.g., CFO, I/Q offset),
(2) Neural networks also can overfit to a specific bit pattern
in a packet, rather than the transmitter imperfections. This is
problematic because BLE advertisements do not have a stable
bit pattern: MAC addresses change every 15 minutes. (3) In
our preliminary experiments with neural nets, we found they
require significantly more training data than the conventional
classification we describe in this work.
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C. Accurate measurement of BLE’s CFO & I/Q imperfections

The fingerprinting methodology we present in this work
(Figure 3) is the first physical-layer identification method
that can accurately estimate CFO and I/Q imperfections of
BLE signals. To fingerprint BLE, we need to overcome the
following two fundamental challenges:

Accurate estimation of CFO (and I/Q imperfections) is not
feasible with BLE’s short training symbol sequence (pream-
ble). Instead of relying on the 8 known samples, we can utilize
the entire packet (∼370 samples). This results in a theoretical
CFO measurement precision of about 40 Hz compared to
2 kHz from BLE’s coarse CFO estimation. The next question
is: how can we leverage the entire decoded packet to estimate
CFO and I/Q imperfections accurately?

First, we decode the entire received BLE packet (for packets
with a valid CRC) and reconstruct a clean BLE waveform
(Figure 3 top). Then, we leverage the clean reconstructed BLE
waveform and distort it iteratively, we do so until we find
CFO and I/Q imperfection estimates where the reconstructed
signal matches the original received signal (Figure 3 bottom).
Brute force search for the optimal CFO and I/Q imperfec-
tions requires significant computational complexity because
we need to search all possible values. We use optimization
techniques to make this more efficient. The primary insight
of our optimization approach is as follows: estimating I/Q
imperfections of a received signal depends on the estimates of
the signal’s CFO. Therefore, as we get closer to an accurate
estimate of CFO, we reduce the search space to find accurate
I/Q imperfections. We build on this insight and present a joint
CFO and I/Q imperfection estimation methodology.

Jointly estimating CFO and I/Q: Let y be the captured
complex baseband BLE signal (normalized by the average
amplitude). In a GFSK modulated signal, ideally we have
Real{y} = cos(ω(t)t) and Imag{x} = sin(ω(t)t) where
ω(t) is the baseband frequency of the signal which is generated
according to the GFSK modulation. However, the presence
of hardware imperfections will slightly change the baseband
signal. We first decode the signal to obtain the sequence of
bits and then, we make ω(t) according to GFSK modulation.
Let y′ be the model of the imperfect signal. With the effects
of CFO and I/Q imperfections, the baseband signal becomes:
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where fo, φo, A, 1−ε
1+ε , φ, I and Q denote CFO, phase offset,

normalized amplitude of the signal, I/Q amplitude imbalance,
I/Q phase imbalance, I offset and Q offset, respectively. The
goal is to choose the value of these variables in such a way
that ||y′ − y||2 is minimum and as a result, y′ is as close as
possible to the captured signal y. Therefore, we must solve
the following optimization problem:

minfo,φo,A,ε,φ,I,QF = ||y′ − y||2 =

|Real{y′} −Real{y}|2 + |Imag{y′} − Imag{y}|2

However, this problem is not convex, and the objective func-
tion has several local minima (Figure 4). To avoid optimization
techniques ending up in a local minimum, we initialize the
variables properly. This increases the chance of finding the
global minimum. Although theoretically we aren’t guaranteed
to reach the global minimum for arbitrary optimum numbers
of these variables, we found in practice the initialization helps
us reach the optimum value.

To initialize CFO, we start by taking the average of frequen-
cies in the preamble. Then we compensate the initial CFO in
the signal to get the signal z = ye−2πfot. To estimate initial
I/Q imperfections, we use the I/Q constellation of the GFSK
signal. The I/Q constellation of an ideal GFSK signal is a circle
centered at (0, 0). However, I/Q imperfection will change this
constellation. Specifically, I/Q offset shifts the center of the
constellation, and I/Q imbalance changes the shape from a
circle to a tilted ellipse. As a result, to get an initial estimation
of I/Q imperfections, we fit an ellipse to the 2-dimensional
points (Imag{z}, Real{z}) by minimizing the Least Square
Error. The center of the ellipse will provide the initial I/Q
offset, and initial I/Q imbalance can be obtained from the ratio
of minor and major diameter and rotation angle of the ellipse.

Although these initial estimations are close to optimum, they
are not accurate. As mentioned earlier, this CFO initialization
is based on an 8 symbol preamble and therefore not accurate.



Moreover, an inaccurate CFO estimate will cause a time-
dependent phase shift which distorts the I/Q constellation.
Therefore, the initial I/Q offset and imbalance estimation
will also have errors. Consequently, we employ optimization
techniques to jointly estimate these imperfections using the
initial estimates.

We chose gradient descent to solve the optimization prob-
lem, as it ensures that we move towards the optimal values
after each step. Specifically, we use a quick form of gradient
descent, Nesterov Accelerated Gradient Descent (NAG) to
move from the initialization towards the optimum values
of fo, φo, A, ε, φ, I,Q by minimizing F in the mentioned
optimization problem. NAG adaptively adjusts the parameter
update at each step, so that we move faster towards the optimal
value at the start but slow down as we get close to the minima.

Figure 4 demonstrates the process of how we start from
the initial estimations of CFO and I/Q imperfections, then
move toward the optimal values of CFO and I/Q imperfections
using gradient descent (the red line), and finally converge to
the accurate estimations of CFO and I/Q imperfections in a
few iterations. Since this optimization problem is not convex,
it is still possible we end up converging to a local optima.
Therefore, if after convergence, the average of F was not less
than a certain threshold (determined according to SNR), we
adjust the initialization values by a fixed step and repeat the
gradient descent process.

The proposed optimization based estimation ensures ac-
curate estimation with fine granularity as it keeps moving
towards the optimum with adaptive steps and removes the
mutual effect of mismatch in estimating these imperfection pa-
rameters. Moreover, the objective function of the optimization
is chosen as the summation of all samples across the packet,
which diminishes the impact of the channel and provides fine-
grained estimates of the CFO and I/Q imperfections.

Evaluating CFO estimation accuracy: To evaluate the ac-
curacy of our new fine-grained fingerprinting algorithm com-
pared with BLE’s default coarse CFO estimation, we compute
the standard deviation of CFO measured for 100 packets from
each device in a set of 100 different BLE transmitters observed
in the field. Figure 5 shows the CDF of the standard deviation
of the CFO across all transmitters, for both techniques. We
see that our fine-grained CFO estimation significantly reduces
the standard deviation of CFO estimation for all devices. This
reduces the within-device variance, making fingerprints easier
to distinguish.

Summary: We demonstrate that it is feasible to estimate
CFO and I/Q imperfections of WiFi/BLE combo chipsets
accurately; even though BLE does not have the rich signal
features that are present in WiFi.

D. Fingerprinting and identifying a target device

With fine-grained estimates of the CFO and I/Q imper-
fections in BLE transmissions, we can now execute a BLE
location tracking attack. The first step in the attack is capturing
BLE packets. We use an SDR to capture raw I and Q samples
of nearby BLE transmissions. The captured BLE packets are
processed in two stages—fingerprinting and identification. In
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Fig. 5: Comparing the CFO estimation of existing coarse-
grained techniques with our proposed technique.

the fingerprinting stage the target device is briefly isolated, and
we capture a number of packets that we use for building a fin-
gerprint for the device (i.e., training packets). The latter stage
identifies if a captured BLE packet matches the fingerprint of
the target device.

Fingerprinting Stage: For each packet from a device D,
we extract CFO and I/Q imperfections using the algorithm
described in III-C. Let x1, ..., xN be the CFO and I/Q imper-
fection feature vectors for N training packets we have received
from device D. We calculate the mean µD and covariance
matrix ΣD of X = [x1 ... xN ]. µD and ΣD together with
a threshold that will be defined later is considered the profile
of device D.

Identification Stage: In identification stage, we want to
decide whether a packet xt was transmitted by device D,
indicating that the target device is near the SDR. To do so, we
compute the Mahalanobis distance to the profile of device D:

distance(xt, µD,ΣD) =
√

(xt − µD)TΣ−1D (xt − µD)

This distance metric measures how close the features of the
new packet are to the profile of device D. In addition to µD
and ΣD, we define a threshold thresh as the profile of the
device. Whenever distance(xt, µD,ΣD) < thresh for packet
xt, we identify the packet as being transmitted by the target
device D. The threshold can be chosen in two ways. One way
would be to choose a threshold that guarantees a certain FNR
in a validation set. Another way can be to pick a threshold that
minimizes FPR2 +FNR2, so that their values are balanced.
In this paper, we use these two methods for selecting the
threshold depending on the goal of the experiment.

Additionally, since the MAC address of every BLE device
is stable for a limited duration of time, we can receive multiple
packets that we know belong to the same BLE device. As a
result, we can use multiple packets to identify a BLE device,
reducing inter-packet noise. One way that we found most
effective to use multiple packets was to first average the feature
vector x for all packets from the same BLE device, and then
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compute the Mahalanobis distance. This averaging reduces the
effect of small deviations in the imperfections across packets.

Summary: We identify a device based on the Mahalanobis
distance to its previously recorded hardware imperfection
fingerprint. Also, since BLE devices have temporarily stable
identifiers in their packets, we can identify a device based
on the average over multiple packets, increasing identification
accuracy.

IV. CHALLENGES

There are five primary challenges that limit the effectiveness
of tracking BLE devices based on their physical-layer finger-
print. For each challenge, we perform controlled experiments
or theoretical analysis to investigate how significantly they
affect fingerprinting accuracy in practice. We found that BLE
tracking attacks are likely to be feasible in practice. However,
the attacker’s ability to track a specific device will vary
depending on several factors that are out of their control.

A. Uniqueness of BLE fingerprints

BLE transmitters must have unique imperfections if an
attacker wants to differentiate their target from other nearby
devices. To evaluate how similar BLE fingerprints are in
practice, we compare the fingerprint of many devices across
three different popular BLE chipsets. Specifically, we captured
the fingerprint of eight recent iPhones with WiFi+BLE combo
chipsets, 20 ESP32 WiFi+BLE microcontroller chipsets, and
20 TI CC2640 BLE-only chipsets used in low-power devices
(e.g., fitness trackers). We captured 100 packets using a high-
quality SDR (USRP N210) from each of these devices in a
controlled environment (i.e., an RF isolation chamber). We
computed the fingerprint of each device across all 100 packets
using the methodology described in the previous section.

Figure 6 shows the mean of the fingerprint metrics for
each of the 48 devices. We plot only the CFO and I/Q offset
metrics to simplify the visualization, adding I/Q imbalance
does not change the conclusions of the experiment. Overall,
most of the 48 devices have unique fingerprints. However,
there are a few devices that have similar fingerprints, making

PFD VCO

Gaussian pulse
shaping filter

RF
out

packet bits 
in

CFO

Fig. 7: TI’s BLE-only transmitter. This is not an I/Q modulator.

them more difficult to uniquely identify. The distribution of
device fingerprints also appears to be dependent on the chipset.
Namely, there are striking differences in how the I/Q offset
metric is distributed between different chipsets. For instance,
the ESP32 devices have a much larger range of I/Q offsets
than the iPhones, which may be because ESP32s are low-end
chipsets compared to the high-performance WiFi+BLE combo
chipsets used in iPhones.

Surprisingly, the TI BLE-only chipsets all have negligible
I/Q offset. Recall in Section III, we described how unlike WiFi,
BLE is not an inherently I/Q modulated protocol; therefore, the
TI’s BLE-only chipset may have I/Q offset because it may not
use an I/Q modulator. We confirmed this suspicion by finding
a technical report that describes the TI BLE chipset radio
architecture: it uses a PLL-based (non-I/Q) modulator [36].

Summary: An attacker’s ability to uniquely identify a target
device’s fingerprint depends on the BLE chipset it is using, as
well as the chipsets of the other devices nearby. Distinguishing
devices with the same chipset is likely more difficult than
distinguishing devices with different chipsets. This may make
tracking attacks difficult in practice because targets are likely
to use the same popular devices (e.g., iPhone).

B. Temperature stability of BLE fingerprints
A device’s BLE fingerprint must be stable to track over

time across multiple locations. However, a device’s CFO may
drift when the temperature of the device changes. CFO is
a product of imperfections in the crystal oscillator used to
generate the transmitter’s center frequency (e.g., 2.480 GHz),
and the frequency error of a crystal oscillator has a well-
defined relationship with its temperature called the “Bechmann
curve”. The relationship between temperature changes and I/Q
imperfections is not as well understood as with CFO.

Smartphones are particularly exposed to temperature varia-
tions. Their internal temperature can significantly change due
to internal components heating up (and cooling down) when
activity changes, and they also experience a variety of ambient
temperatures [20]. However, it is possible that smartphones do
not have instability in their BLE transmissions. The impact of
temperature on CFO is dependent on the cut angle and face
of the crystal [12], and smartphones may use high-quality
crystals that have less frequency drift due to temperature
changes. Also, smartphones may use temperature compensated
crystals as they may be required for high-data rate cellular
communication chipsets.
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Fig. 8: Metric stability while playing a GPU-intensive game

We performed controlled experiments to observe how tem-
perature affects CFO and I/Q offset of a typical smartphone.
We tested the effects of internal components changing tem-
perature by playing a graphics-heavy game (Asphalt 9), and
the effects of ambient temperature by putting an idle phone
into a user’s pants pocket. Our test device was a common
smartphone, a Moto G6, and it was running a COVID–
19 contact tracing app to generate BLE transmissions. Each
test ran for 15 minutes. During the tests we captured the
fingerprint metrics from each BLE packet with a USRP
N210. Simultaneously, we also captured readings from all the
internal temperature sensors of the device. We only present the
temperature sensor data that most closely correlated with the
changes in CFO, which was the Power Management Integrated
Circuit’s temperature sensor.

Figures 8 and 9 show the per-packet variation in CFO
and IQ offset during the 15-minute tests. We do not show
the variation in I/Q imbalance as it as we found it has
a similar relationship to temperature as I/Q offset. For the
game experiment (Figure 8), we observe that the CFO has a
linear relationship to the changes in temperature. When the
game begins, the CFO increases, and when the game ends,
it decreases. At the peak internal temperature (+10°C above
baseline), we observe a significant CFO deviation (7 kHz). For
the in-pocket experiment (Figure 9), the peak change in CFO
is much less than the game experiment (2 kHz). However, it
is still significant enough to introduce confusion with other
devices that have similar I/Q metrics (Figure 6). Finally,
figures 8 and 9 both show that I/Q offset (and I/Q imbalance
which is not shown) does not correlate with temperature.

Summary: Device temperature changes significantly change
the CFO a smartphone, but not the I/Q imperfections. If an
attacker tries to track a device when it is under heavy use,
it will need to allow for significant differences in CFO from
the initial fingerprint, which may result in increased confusion
with other nearby devices. Also, putting an idle device in a
user’s pocket changes the CFO significantly enough to cause
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Fig. 9: Metric stability while putting the phone in a pocket

confusion as well. Ideally, an attacker would both get an initial
fingerprint, and try to identify the device, in the of the most
common use case for the device: idle in the user’s pocket.

C. Differences in BLE transmitter power

BLE transmit power affects how far away an attacker can
track a target. If some devices have lower transmit power,
it is more difficult for an attacker to capture their beacons.
One may assume that all similar devices (e.g., smartphones)
would use similar transmit power—especially when they are
running the same popular app. In particular, we would expect
similar transmit power for the same contact tracing apps,
where transmit power correlates with distance where the
contact occurred. However, transmit power is configurable:
BLE APIs on mobile devices allow applications to set their
beacon transmit power to match the needs of the application.

We measured the received SNR of BLE beacons from
several popular smartphones while they were running the Ap-
ple/Google COVID–19 contact tracing app. The measurement
was performed with a USRP N210, and all the phones were
placed at the same distance (15 feet) from the USRP. We
performed this measurement on five different phones, running
latest version of iOS and different versions of Android. We
installed the same official California COVID–19 contact trac-
ing app on all the devices. Then, we averaged the SNR over
100 received packets from each of the devices.

Figure 10 shows that the iPhone 8 has an SNR 10 dB
higher than all other Android phones we tested. Therefore, the
iPhone’s BLE beacons are likely to be received considerably
farther away than the other devices. Anecdotally, we observed
that an iPhone’s COVID–19 contact tracing beacons 7 meters
farther than any of the Android devices we tested*.

Summary: There can be significant differences in BLE
transmit power across devices, and even across apps running
on devices. We observed that iPhones transmit COVID–19

*Including other versions of the iPhone available at the time (e.g., Xr).
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contact tracing beacons with significantly higher power than
Android devices. Consequently, attackers may be able to track
iPhones from a farther distance than Android devices.

D. Quality of an attacker’s sniffer radio

Physical-layer fingerprinting attacks can require an expen-
sive high-quality Software-Defined Radio (SDR) to execute.
The problem is, an SDR’s receiver chain adds signal imperfec-
tions to the transmitted signals. If the SDR’s imperfections are
unstable, they can make it difficult to identify a device based
on its previously captured fingerprint. On the other hand, the
more expensive the required SDR is, the fewer locations an
attacker can deploy them to track their target.

Recently, several low-cost SDRs have become popular
among hobbyists. However, the stability of their receivers’
imperfections are unknown. We evaluate if one of the least
expensive SDRs has sufficient imperfection stability for BLE
device tracking.

We compared the fingerprinting metrics captured by a
high-end SDR, USRP N210 ($3,400), and a low-end SDR,
LimeSDR-Mini ($179). To make the comparison fair, we
sent BLE packets from a single iPhone device to both SDRs
simultaneously. We computed the average and standard devi-
ation of our metrics to evaluate if the two devices observe
the same absolute imperfections, and if they have similar
metric stability. Similar to prior experiments, we captured 100
beacons to compute these distributions.

CFO: The USRP observed a mean of -4.78 kHz and a
standard deviation of 102 Hz, while the Lime-SDR observed a
lower mean of -8.07 kHz but with a similar standard deviation
of 114 Hz. The difference is in the mean CFO is likely due
to manufacturing variations in the SDR’s crystal oscillators.
Both radios however use a TCXO-based oscillator, therefore
their CFO measurements will be stable even if the SDR’s
temperature changes.

I/Q metrics: A similar conclusion can be drawn about
the differences between the observed I/Q metrics. The USRP
observed an average I/Q offset magnitude of 0.0145 and
standard deviation of 0.0017. While the Lime-SDR observed
an average of 0.0203 but with a similar standard deviation
0.0030. The I/Q imbalance was surprisingly similar across
both devices, with a mean amplitude of 0.991 for the USRP

and 0.987 for the Lime-SDR, the corresponding standard
deviations were similar too (0.0016 and 0.0021).

Summary: Attackers can use lower-cost ($179) hobbyist-
grade SDRs to do physical-layer attacks, but they will likely
have to calibrate the differences between their SDRs before
they deploy them.

E. Mobility of target device

Physical-layer tracking would be impossible if the BLE
fingerprint of BLE device changes as it moves from one
physical location to another. Specifically, fingerprints may
change due to differences in the target’s physical environment
(e.g., multipath in one room vs. another), and differences in
motion of the target (e.g., walking vs. driving).

Physical environment: A change in the physical location
of the target can alter the received signal’s SNR due to
changes multipath conditions. However, we observed that this
appears to have an insignificant impact on BLE fingerprinting
metrics. In Section V-C, we will demonstrate that we can
accurately identify 17 target devices across different locations.
Furthermore, Figures 12 and 11 show the that above a certain
minimum SNR (∼10 dB), changes in SNR do not impact
identification accuracy

Speed of Motion: A moving BLE device may experience
a velocity-dependent frequency offset due to the Doppler
effect [41]. While this may cause a slight drift in the CFO
of the BLE target device, the impact is not significant for the
frequencies that BLE operates at.

For example, if a BLE device is moving at a velocity of 80
kilometers per hour, and the receiver is stationary, the Doppler
frequency offset at 2.4 GHz is about 180 Hz. This is only
5̃0% of the median of standard deviation of CFO for BLE
devices we observed in the field (Figure 5). Therefore, even at
relatively high speed motion, the Doppler shift doesn’t impact
an attacker’s ability to track devices.

Summary: Changing location, or speed, of BLE device has
an insignificant impact on the attacker’s ability to accurately
fingerprint and identify a target device.

V. FIELD EVALUATION

Several of the challenges described in the previous section
raise the possibility that there are realistic scenarios where
an attacker may falsely identify their target is present when
it is not (False Positive), or falsely identify their target is
not present when it is (False Negative). Determining how
often these errors happen in practice requires a field study.
Fortunately, BLE devices constantly beacon, and these beacons
contain an anonymous identifier that is stable for 15-minutes.
We leverage these properties of BLE to perform a large-
scale uncontrolled field study of how severely misidentification
errors manifest in real-world environments.

To begin with, we assess how well our BLE tracking toolkit
works, even though devices may not have unique fingerprints,
and their fingerprint can be affected by temperature variations.
We end with two case studies describing how well the end-to-
end attack works in the field over multiple days. To the best
of our knowledge, this is the first uncontrolled experiment to
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evaluate the effectiveness of a physical-layer tracking attack
in practice.

Data Collection

We collected two datasets of BLE beacons from uncon-
trolled mobile devices. The first dataset was collected in
public places that were likely to contain many stationary
BLE-enabled mobile devices, including: six coffee shops, a
university library, a food court. We set up a USRP N210 in
each of these locations for approximately one hour, and op-
portunistically collected BLE beacons. We observed hundreds
of packets from 162 unique devices across all the locations.
We used this dataset to evaluate the false positive (and false
negative) rate of our BLE tracking toolkit. The second dataset
was collected in a facility where many unique devices passed
briefly within range of our USRP N210. We observed dozens
of packets from 647 unique devices over the course of 20
hours of data collection. We used this dataset to evaluate the
uniqueness of BLE physical-layer fingerprints across a large
number of devices.

Ethical Considerations: Our data collection is completely
passive, and we only capture BLE advertisement packets (i.e.,
beacons) that devices already broadcast indiscriminately with
the intention of being received by any nearby device. Many
of these packets originated from pervasive BLE applications
like contact tracing and device discovery. To ensure we only
capture BLE advertisement packets, we configured our SDR
to only capture BLE advertisement frequencies and mask off
non-advertisement channels [22]. Furthermore, we ensure that
in the decoding stage only undirected advertising packets are
passed on to the analysis phase.

The device fingerprints we produce as part of the analysis
in this work cannot be directly linked to individual people.
Moreover, the BLE advertising packets from which we pro-
duce these fingerprints do not reveal any personally identifiable
information about the user of the transmitting device. We only
performed full identification and tracking on 17 devices that
we controlled. According to our university’s IRB office, this
work does not qualify as human subjects research.
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Fig. 12: Identification accuracy with different test sizes

Data Analysis

We fingerprint and identify devices using our BLE tracking
toolkit described in Section III. To apply this methodology
on field-collected datasets, we first had to determine how
many packets an attacker needs to receive from each device to
accurately fingerprint and identify it. We found this threshold
by performing a controlled experiment using 20 ESP32 BLE
chipsets. We tested in varying SNR conditions from 10 to
30 dB—exactly what an attacker would typically see in the
field—to see if the number of packets needed for fingerprinting
and identification increases when beacons have poor SNR.
Next, we identified each of the 20 devices using the algorithm
described in Section III-D. We split the captures used for
training and test as follows: 80% of the beacons were used
for training (i.e., fingerprinting), and 20% for testing (i.e.,
identifying). We trained with beacons at three SNR values:
{10, 15, 25} dB. Then, we ran identification tests with beacons
that had {10, 15, 25} dB SNR independently. We evaluated the
identification accuracy of different training sizes with a test
size of 10 packets.

Figure 11 shows the accuracy of identifying the devices
compared to the number of training packets used for building
the device fingerprints. For all SNR values, having 50 packets
for training is sufficient. Many BLE devices transmit signifi-
cantly more than 50 beacons a minute (Table I); therefore we
estimate an attacker only needs to isolate a mobile device for
at most one minute to get enough packets to fingerprint it.

Figure 12 shows the accuracy of classifying the devices
compared to the number of packets used (the number of
training packets is fixed to 50 per device). Across the tested
SNRs, an attacker only needs 10 packets to accurately identify
a device. For the rest of the field study, we use 50 packets to
fingerprint a device, and 10 packets to identify a device.

A. False Positives and False Negatives

In the following experiments, we evaluate the likelihood that
our BLE tracking toolkit confuses a device that is not a target
with a target (False Positive), and the likelihood that it does
not identify a target when it is present (False Negative).



0% 2% 4% 6% 8% 10% 12%
FPR

0.00

0.20

0.40

0.60

0.80

1.00
C

D
F

Fig. 13: Dist. of FPR a device when comparing with all others

Given the absence of ground truth of device identities in our
dataset, we relied upon the fact that BLE devices have stable
MAC addresses for ∼15 minutes (after with they re-randomize
the MAC address). Therefore, we used the MAC as ground
truth that multiple packets received were from the same device.
However, a device’s MAC address can be randomized during
our data collection, causing us to incorrectly treat the same
physical-layer fingerprint as two devices. We mitigated this
problem by only considering devices that we observed during
one contiguous period of time in each location where we did
not observe any new devices, nor any devices that appear to
stop transmitting. This filtering left us with 162 devices to use
for our false positive and false negative evaluation.

We consider every device (MAC address)
i ∈ {1, 2, 3, ..., 162} as a target, and we train our classifier
to find that device’s fingerprint (Section III-D). Then, for
each of the other devices, we run the classifier to see if it
identifies them as the target (i) device. If it does, then that is
considered a false positive. The number of false positives for
target device i divided by the total number of devices is the
False Positive Rate (FPR) for device i. Next, we fingerprint
each target i and run the classifier to see if it fails to identify
each device as itself. Each instance of this is a false negative.
We repeat this process for all the 162 devices (each time one
of them is selected as the target), and divide the result by the
total number of devices to compute the total False Negative
Rate (FNR). We observe our classifier achieves a 2.5% FNR
across all 162 devices.

Figure 13 shows the distribution of FPR for each of the
162 devices. The median FPR of a device is only 0.62%.
Moreover, 40% of the devices were not confused with any
other device (zero FPR), which implies many devices seen
in the field have unique physical-layer fingerprints. Owning a
device with unique imperfections makes someone particularly
vulnerable to BLE tracking attacks. We also observed a small
fraction of devices had an FPR as high as 10%.

1) How imperfections contribute to identification: Next, we
evaluate how each of the imperfections contribute to identifi-
cation. Table II shows the FPR and FNR when using CFO,
I/Q offset and I/Q imbalance separately, and all together, by

Features used FPR FNR
CFO only 2.42% 2.45%
I/Q offset only 19.84% 2.39%
I/Q imbalance only 32.53% 1.52%
All Features 1.21% 2.53%

TABLE II: Hardware imperfection-specific FPR and FNR.

Devices Compared FPR FNR
Only Apple Products 1.91% 2.40%
Only other Products 1.15% 2.94%
Apple vs other 0.15% —
All Devices 1.21% 2.53%

TABLE III: Manufacturer-specific FPR and FNR.

repeating a similar experiment as we used to compare device
manufacturers. CFO contributes the most to identification, as
it can have a wider range of values for different devices
compared to I/Q imperfections. I/Q imperfections alone have a
much higher FPR, but they can resolve the confusion between
devices with similar CFO. This same phenomena is also visible
our controlled lab experiments (Figure 6) where some devices
have CFO values close to each other, but their difference in
I/Q imperfection makes them distinguishable. Also, recall that
temperature can cause variation CFO while it does not have
any notable impact on I/Q imperfections. As a result, I/Q
imperfections can help identify the target when it experiences
temperature changes.

2) Effect of device model: Based on our controlled ex-
periments (Section IV-A), we expect devices from the same
manufacturer to be more likely to be confused than devices
of different manufacturers. To test this hypothesis, we used
the technique proposed in [11] to distinguish Apple products
in our dataset from other devices. About 76% (123 devices)
in the dataset are Apple products. The prominence of Apple
products in the dataset is likely because Apple enables their
BLE-based device handoff service by default on many of their
mobile products, including iPhones and Apple Watches.†

Table III shows the FPR and FNR of Apple products
compared with other products. As expected, the FPR when
comparing Apple devices with other Apple devices (1.91%)
is greater than the median FPR when comparing across all
devices (0.62%). Also, the FPR and FNR when comparing
Apple products with other devices is close to zero. This
appears to confirm our hypothesis that devices from the same
manufacturer are more likely to be similar to each other than
devices from different manufactures.

3) Effect of temperature: The temperature of the devices
we observe in the field were unlikely to experience significant
temperature changes during the course of our data collection.
Therefore, we perform a model-based simulation to evaluate
the effect of temperature changes on FPR and FNR. Recall
that temperature changes affect CFO because of the well-
documented relationship between frequency drift of crystal
oscillators and their temperature (Section IV-A). Using the
curves in [12], we calculate the change in CFO (∆f ) as
temperature drifts further from the temperature baseline when
the device was fingerprinted (∆T ◦C). To ensure the target

†We collected this dataset before COVID–19 contact tracing launched.
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Fig. 14: How oscillator temperature changes affect FPR.

is not missed even if the temperature changes are as large
as ∆T ◦C, we modified the classifier to accept the device
as the target even if the CFO of the device is ∆f away
from the fingerprinted CFO of the target. The consequence
of increasing the range of acceptable CFO values is that it
increases the chance of observing a device whose CFO falls
in the acceptable range, resulting in an increase in FPR.

Figure 14 presents the FPR as the change in temperature
increases. We present the results for both high-quality and
low-quality crystals (i.e., different cutting accuracies), as the
type of crystal depends on the specific device being targeted.
Temperature change causes significantly less change in CFO
(and thus less increase in FPR) for high-quality crystals (0
minute cutting accuracy) compared to low quality crystals
(8 minute cutting accuracy). For low-quality crystals, FPR
increases rapidly as the temperature increases. If the change in
temperature is too significant (25◦C), CFO becomes useless
for identification: the FPR is the same as if we only used IQ
offset and IQ imbalance. In summary, temperature changes
can severely limit an attacker’s ability to track a target device.

B. Uniqueness of imperfections

Recall that across the 162 devices observed in our first
field evaluation dataset, we found ∼40% of the devices to be
uniquely identifiable. However, is natural to ask, is the same
true at large scale? If the attacker were to observe several
hundred devices over multiple days, will we see a similar
fraction of devices that are uniquely identifiable?

To answer this question, we performed a larger-scale field
data collection. We placed an SDR at the exit of a room
where hundreds of different devices passed by each day. We
recorded the Apple/Google COVID–19 Exposure Notification
BLE beacons transmitted by those devices over the course
of l0 hours on two days, separated by one week to limit the
number of duplicate devices. We computed the mean CFO
and mean I/Q offset magnitude for each BLE MAC address we
observed in the beacons. The mean hardware imperfections are
representative of the fingerprint of the BLE device. To reduce
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Fig. 15: Histogram of imperfections across 647 BLE devices.

the chance that we observed the same device with two or more
different MAC addresses, we filtered out devices which were
observed for a duration longer than three minutes‡.

We observed 647 unique MAC addresses across the two 20
hours of data collection. Figure 15 shows the 2-Dimensional
histogram of the fingerprints of these devices, namely their
CFO and I/Q offset magnitude. The number of histogram bins
were chosen so that the number of bins (2500) is significantly
larger than the total BLE devices observed. Each bin represents
a CFO range of ∼1.3 kHz, and an I/Q offset magnitude range
of 0.00516. Devices that fall in the same bin are considered to
have indistinguishable hardware imperfections. We also show
the bounds of the 2D histogram that cover 36% (∼σ) and
67% (∼2σ) of the devices (σ because imperfections tend to
be normally distributed).

We found that 47.1% (305) of the devices were unique.
This confirms that even in a larger data set, ∼40% of devices
are uniquely distinguishable. We also observed that devices
with overlaps did not overlap with many other devices. For
instance, 15% (97) of the devices had similar imperfections
with only one other device.

C. Case Study 1: Temporal tracking of many targets

Next, we conduct an experiment to evaluate how well our
toolkit can track 17 controlled targets over time, in real world
environments. These controlled targets are listed in Table IV.
Each target is isolated in an office to capture 50 packets to
train the classifier with its fingerprint.

False Negative dataset: Between 2–7 days after we finger-
printed the targets, we individually took them to a different
location, and we captured their packets using a USRP N210
sniffer placed 10 ft away from the targets. We did not strictly
force the targets to have the same temperature in the office and
food court, but both environments were air-conditioned indoor
buildings and there was nominal activity on the targets.

False Positive dataset: We evaluated the FPR for these
targets using a trace from a coffee shop from our field datasets,

‡Apple rotates addresses every 15 mins and Android every 10 mins.
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Fig. 16: FNR–FPR for 17 controlled targets.

#: Device #: Device #: Device
1: iPhone 10 7: iPhone 10 13: MacBook Pro
2: iPhone 8 8: iWatch 14: Thinkpad
3: iPhone 11 9: iPhone 10 15: AirPod
4: Bose Headset 10: iPhone 8 16: Pixel 2
5: iWatch 11: iPhone 10 17: Pixel 5
6: iPhone 8 12: iWatch

TABLE IV: 17 target devices used for this experiment and
their label numbers that are used in Figures 16 and 17.

because we knew the 17 controlled devices were not present
during that experiment.

Temporal FNR and FPR: We calculate the FNR and FPR
over time, in each 10 second interval of the captures. In each
time interval, we provide 10 packets from each MAC address
to the classifier to determine if it matches any of the 17 targets’
fingerprints. The FNR is the fraction of intervals where the
target was present, but was not identified, and the FPR is the
fraction of intervals where the target was not present, but was
mistakenly identified.

Results: Figure 16 shows the average FNR and FPR for
these 17 targets. The average FNR of these controlled targets
is 3.21% and the average FPR is 3.5%. Although there are
a few devices with high FNR and FPR, most devices have
distinguishable hardware imperfections, resulting in low FNR
and FPR.

Figure 17 shows the temporal patterns of false positive
occurrences for each of the 17 targets in one of the field
traces. Each time there is a bump in a device’s horizontal line,
it means that at least one device was mistakenly identified
as being the target during that time interval. We observe that
false positives are sometimes short-lived, but often they last
for longer than one 10-second interval, possibly indicating a
device with similar hardware imperfections came within range
of the sniffer.

D. Case Study 2: Tracking a person

Finally, we describe an end-to-end tracking attack we
executed on a controlled target (a volunteer who uses an
iPhone). The attacker first carries their SDR sniffer close to the
target device to obtain the device’s physical-layer fingerprint.
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Fig. 17: FPR occurrences over time for each of the 17 targets.

Simultaneously, the attacker scans for nearby BLE devices
using a commonly available BLE scanner phone app, and they
record the MAC address of the BLE device with the highest
observed signal strength, which is the nearest device (i.e., the
target’s phone). Later, they use this MAC address to pick out
the target device’s packets from the raw sniffer capture. Then,
they feed these packets into the BLE tracking toolkit to train
its classifier with the target device’s fingerprint.

After creating the fingerprint, the attacker tracks their target
by placing an SDR and laptop close to their target’s home. The
attacker can determine when the target is home by observing
when the classifier running on the laptop indicates the packets
received by the SDR match the target device’s fingerprint.
The attacker tracks their target for one hour, during which the
target walks inside and outside the house 2 times. Figure 18
shows the number of unique MAC addresses observed every
ten seconds during this hour. There are approximately 30 other
devices nearby that could be confused with the target.

The blue bar shown in Figure 19 shows the ground truth of
when the person was inside the house during this hour. The
attacker’s identification toolkit runs once every 10 seconds,
and the red bar shows the time durations during which the
tracking toolkit thinks the person was present. The bars
perfectly match except for immediately prior to minute 10,
where the toolkit falsely detects the presence of the target for
50 seconds, even though it had not yet actually returned.

VI. COUNTERMEASURES

BLE location tracking based on hardware impairments can-
not be defended against by simple software/firmware update
mechanisms. These manufacturing variation based properties
are baked into the RF signal chain.

One possible defense against this attack requires us to
rethink the design of a BLE chipset’s signal chain. We envision
adding a random time-varying extra frequency offset the
crystal oscillator. This would cause the CFO measured at the
receiver to also be time-varying and unpredictable. Fortunately,
since BLE has a large CFO tolerance (150 kHz [30]), an extra
frequency shift will not impact packet decoding.
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Fig. 18: Number of unique MAC addresses observed over time
while tracking the target.

We also envision another defense that does not require
hardware modification. In Section IV-B we observed that CFO
changes significantly when a device’s internal components heat
up and cool down. Internal component temperature depends on
the workload running on the phone: a time-varying workload
can result in a time-varying CFO. We envision a defense in
which a background process runs a computation, and keeps
randomly changing the computation in line with the MAC ad-
dress changes. Unfortunately, a constantly changing workload
can result in a constantly changing battery consumption. Worse
still, if the device temperature remains constantly elevated, the
battery life also decreases over time [20].

VII. RELATED WORK

BLE MAC-Layer Fingerprinting

At its most basic level, BLE’s design frustrates MAC-layer
fingerprinting. Although BLE advertisements contain a full 6-
byte MAC address that is unique to the advertising device,
the BLE protocol also has built-in cryptographic MAC ran-
domization. Fortunately, prior work found (and we confirmed)
that mobile devices are properly implementing BLE’s MAC
address randomization [5], [26]. Namely, they found devices
are following the BLE specification and periodically (every
10–15 minutes) randomizing their MAC addresses [6].

However, several papers have performed privacy attacks
by deriving identifiers from the packet contents of beacons
that were not reset properly after the MAC was randomized,
for both WiFi [15], [26] and BLE [32], [33], [5], [25], [11]
radios. However, all of these attacks fall short as they either
require the receiver to continuously listen to beacons from
the target devices, or fundamentally rely on identifiers that
can easily be removed through simple software updates. This
limits the attacker’s ability as they must persistently follow
a target to track it. Thus, link layer techniques don’t provide
persistent identifiers that can be utilized for long term tracking
of devices.

Physical-layer Fingerprinting

RF fingerprinting using hardware impairments is a well
studied field. Researchers have analyzed various hardware
impairment based signal properties such as CFO, I/Q off-
set/imbalance, signal transients and others [9], [39], [17], [23],
[35], [24], [4], and leveraged various statistical methods, and
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Fig. 19: The blue bar represents the time that the target was
present, the red bar represents the time that our tracking toolkit
detected the presence of the target.

in recent times deep learning approaches [16], [42], [27] to
fingerprint these properties. For instance, the transient portion
of the signal has been proposed as a unique signature to
classify different wireless devices [38], [13] even Bluetooth
signals [18]. However, the transient portion of BLE and
Bluetooth signals is only about 2 microseconds and con-
tains insufficient information to uniquely identify a device
among tens of devices. Modulation-shape features have also
been explored for RF fingerprinting devices such as RFID
transponders [14]. However, the Gaussian shape in GFSK
modulation of BLE signals is generated digitally in most
personal electronic devices such as phones, and thus, cannot
be used as a unique fingerprint. In the WiFi literature, CFO
and I/Q imperfections (I/Q origin offset and I/Q imbalance)
are two well recognized features which have been shown to
be the most separable features for WiFi fingerprinting [9].

BLE hardware in mobile devices are similar in architecture
and suffer from the same hardware impairments as WiFi
radios. Despite that, other than a few efforts at coarse CFO
extraction utilizing specialized hardware (CC2400) [34], [40],
there exists limited work in RF fingerprinting of these BLE
chipsets. This is primarily because the techniques to extract
these properties rely upon the presence of long known se-
quence of bits and pilots, a convenience not provided in simple
BLE transmissions. Even if the WiFi techniques were utilized
for BLE signals, they would yield coarse estimates of these
persistent identifiers, which are not particularly useful when
fingerprinting a large amount of devices. Furthermore, to be
able to utilize any RF fingerprinting technique as a privacy
attack, we need to have evidence that it works in real world
settings. Unfortunately, all prior work in RF fingerprinting has
been performed in controlled environmental settings with a
defined set of devices. We design a technique to extract the
hardware impairments such as CFO and I/Q offset from BLE
signals at a fine granularity. We were then able to collect a
massive dataset of BLE devices in the wild and analyze their
RF fingerprints to evaluate the potentials and limitations of
the physical-layer fingerprinting privacy attack in the wild.
We also demonstrated the feasibility of a location privacy
(tracking) attack utilizing these physical-layer parameters in
a realistic scenario.



VIII. CONCLUSION

In this work, we evaluated the feasibility of physical-layer
tracking attacks on BLE-enabled mobile devices. We found
that many popular mobile devices are essentially operating as
tracking beacons for their users, transmitting hundreds of BLE
beacons per second. We discovered that it is indeed feasible
to get fingerprints of the transmitters of BLE devices, even
though their signal modulation does not allow for discovering
of these imperfections at decoding time. We developed a tool
that automates recovering these features in transmitted packets.

Then, we used this tool to determine what challenges an
attacker would face in using BLE to track a target in the wild.
We found that attackers can use low-cost SDRs to capture
physical-layer fingerprints, but those identities may not be
easy to capture due to differences in devices’ transmission
power, they may not be stable due to temperate variations, and
they may be similar to other devices of the same make and
model. Or, they may not even have certain identifying features
if they are developed with low power radio architectures.
By evaluating the practicality of this attack in the field,
particularly in busy settings such as coffee shops, we found
that certain devices have unique fingerprints, and therefore
are particularly vulnerable to tracking attacks, others have
common fingerprints, they will often be misidentified. Overall,
we found that BLE does present a location tracking threat
for mobile devices. However, an attackers ability to track a
particular target is essentially a matter of luck.
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