Delivering 360-degree video with Viewport-adaptive Truncation

Tian Qiu
Department of ECE
UC San Diego
La Jolla, USA
tiq014@eng.ucsd.edu

Ish Kumar Jain
Department of ECE
UC San Diego
La Jolla, USA
ikjain@eng.ucsd.edu

Raini Wu
Department of ECE
UC San Diego
La Jolla, USA
rainiwu@ucsd.edu

Dinesh Bharadia
Department of ECE
UC San Diego
La Jolla, USA
dineshb@eng.ucsd.edu

Pamela Cosman
Department of ECE
UC San Diego
La Jolla, USA
pcosman@eng.ucsd.edu

Abstract—Delivering Virtual Reality (VR) content wirelessly involves projecting a 360-degree video into a 2D format and then encoding it to satisfy the wireless bitrate requirements. However, the popular equirectangular and cubemap projections offer little flexibility to adapt to changing bitrates and head motion. In this work, we show that the truncated square pyramid projection offers high flexibility for network and head motion adaptation. We adapt by tuning a truncation parameter that controls the video quality for different spatial regions in the 360-video. Depending on the video, our scheme improves average video quality by up to 1.1dB in PSNR and up to 4.6 in VMAF score compared to a non-adaptive baseline.

Index Terms—Video coding, 360-video, projection

I. INTRODUCTION

Virtual reality (VR) and augmented reality (AR) deliver immersive panoramic 360° video experiences. Due to the large bandwidth requirement [1], efficient 360° video encoding and streaming are required for delivering 360° videos wirelessly.

At any given time, a user has a limited field of view, looking at a region known as the viewport, which typically occupies only 15% of the original 360° video [2], [3]. Transmitting only the viewport region instead of the whole video can yield high-quality VR streaming while satisfying stringent wireless network constraints. However, with this naïve strategy, real users will see blank screens as they move their heads and gaze in different directions. With head motion prediction, the system can fetch the new viewport in advance, so the user enjoys a seamless experience. This requires predicting user head motion over the 1-2sec needed to fetch a viewport from the server. Within this time, users can move in complex ways, so prediction accuracy is ≈58-80% [4], [5]. Thus, new 360° video streaming solutions, beyond viewport-adaptive streaming [5] are needed to provide robustness to viewport prediction error while saving bandwidth.

We present VRProj, a system that leverages the efficient truncated square pyramid (TSP) projection format for 360° video. VRProj differs from existing TSP-based 360° video streaming solutions by introducing flexible truncation and location switching to adapt to user head motion.

II. BACKGROUND AND MOTIVATION

A 360° video represents a scene that covers an entire 3D sphere but is captured in multiple 2D videos and stitched into a 2D video which can be efficiently encoded by traditional 2D codecs, e.g., H.264/AVC [6], H.265/HEVC [7]. We discuss three projection methods: equirectangular projection (ERP), cubemap projection (CMP), and pyramid projections [8], [9]. Fig. 1 shows 360° video in various projections. While popular for its holistic view of the omnidirectional content, ERP inefficiently maps a 3D sphere to an unwrapped 2D plane. This results in inefficiencies which increase farther from the center of the video. CMP mitigates inefficiency by mapping the 3D spherical content to a 2D unwrapped cube; 3D spherical content is divided into six regions, one for each cube face. Inefficiencies occur along the face boundaries, a great improvement over ERP. CMP is popular with commercial video providers such as YouTube [10].

To stream 360° video over a varying channel, tiling-based systems are popular [4], [11]–[24]. These methods divide a video into smaller rectangular tiles. To adapt to varying network conditions, video tiles are encoded to various quality levels, and only the tiles in and around the predicted viewport location are streamed with high quality. The remaining tiles are streamed with low quality. Current tiling-based systems rely on ERP projection due to its simplicity.

An alternative approach to achieve viewport-adaptive quality is to process the omnidirectional content into a format where only a central viewport region has the highest quality. We focus on pyramid projection [25], a representative viewport-adaptive projection. Unlike ERP and CMP, in pyramid projection, only a section of the 3D spherical content is preserved at high quality, and other sections continuously decrease in quality. This is achieved by mapping the high-quality section to the base of a 2D unwrapped pyramid, with other sections as the pyramid sides. Pyramid projection is intrinsically viewport-adaptive; content not in the high-quality

The paper is organized as follows. In Section II, the problem background and design intuition are presented. In Section III, we describe the detailed design of the system. We discuss evaluation results and provide conclusions in Section IV.

The construction requires two parameters: LP determines the location parameters adapted to viewport location and motion. VRProj designs a novel algorithm to find the best truncation and provides additional opportunities for optimization. VRProj quality of non-favored regions through adapting the truncation are truncated in a fixed way. Fine-grained control over the degree of favoritism. The TSP projection allows viewport-adaptive projection direction changes while also allowing for fine-grained control over the quality of non-favored regions using TP.

Prior work on viewport-adaptive TSP projections [26], [27] considers switching only the location parameter for viewport adaptation; the flexibility introduced by a truncation parameter was not explored. Fig. 2(a) illustrates the TSP configuration in a proposal to JVET [26] ("JVET-TSP"). The side faces are truncated in a fixed way. Fine-grained control over the quality of non-favored regions through adapting the truncation provides additional opportunities for optimization. VRProj designs a novel algorithm to find the best truncation and location parameters adapted to viewport location and motion.

III. DESIGN OF VRPROJ

A TSP projection, constructed from a CMP projection, inherits the six CMP faces: the front face, side faces (left, right, top, bottom), and back face as shown in Fig. 2(b). The construction requires two parameters: LP determines the location of the front face in a sphere, and TP determines the extent of truncation. For simplicity, we focus on variations along the yaw axis\(^1\). LP \(\in [-180^\circ, 180^\circ]\) must be decided before projecting a sphere on a cube such that the LP lies at the center of one face of the projected cube; this is the front face of the resulting CMP frame. We then truncate the CMP side faces into trapezoids according to the TP value; given cube face edge length \(L\) and \(TP=\alpha\), both the trapezoid’s height and shorter parallel side will have length \(\alpha L\). These transformations use uniform subsampling [29]. We obtain the back face of TSP by 5X downsampling the cubic back face.

TSP provides a mechanism to adapt to a moving viewport. Changing LP allows coarse adaptation to the viewport location, while TP allows finer adaptation. Fig. 3 illustrates the mechanism for the case of 4 LPs available \((0^\circ, 90^\circ, 180^\circ, -90^\circ)\). With the initial viewport located at \(0^\circ\), i.e., centered at the TSP video’s front face, we choose a low TP=0.2 to heavily truncate the video side faces. As the viewport moves towards \(45^\circ\), it significantly overlaps the side face, which would limit the quality if a low TP were used. So, we increase TP to 0.4. Next, as the viewport crosses \(45^\circ\), a large piece of the viewport lies in the right side face. So we change LP to \(90^\circ\) to make the right face become the new front face, as shown in the fourth case of Fig. 3.

\(^1\) A user is more likely to move her head horizontally than vertically [28].
constraint could be met with a lower TP producing a smaller raw video which then can benefit from low quantization errors (low QP), resulting in high quality for the viewport region. There is a tradeoff in selecting specific TP and QP values.

We analyze the TP-QP tradeoff in Fig. 4. To evaluate perceptual quality, we use Video Multi-Method Assessment Fusion (VMAF) [30], a machine learning-based metric proposed by Netflix. It ranges from 0 to 100, with 100 denoting perfect perceptual quality compared to the reference video. Fixing the TSP video’s front face to 0° and truncating the left and right side faces with TP=0.2, 0.4, 0.6, 0.8 and 1, we extract the viewport at various static locations (yaw angles from 0° to 45°). From Fig. 4, we observe that TP=0.2 provides the best VMAF when the viewport is aligned with the front face because heavy truncation of side faces allows a lower QP value, thus higher front face quality. However, when TP=0.2, VMAF degrades sharply as the viewport moves away from the front face. With higher TP values, VMAF degrades more gradually with yaw angle. In comparing TP of 0.4 and TP of 0.2, the VMAF score for TP=0.4 is lower by 3 (out of 100) for the front face, the scores are about equal at roughly 10° of viewport motion to the right, and beyond 15°, TP=0.4 is consistently better. As TP above 0.4 does not provide useful trade-offs, our system uses only TP=0.2 and TP=0.4.

This mapping of viewport location to TP value is based on empirical evaluation of a 360° video. It can be done off-line at the server once and stored for different videos and bitrates, causing no overhead to real-time streaming. We observe through evaluation on other eight videos that the mapping is resilient to video content and to two average encoding rates (5, 10Mbps). The TP value can be selected based on the predicted viewport location by a table look-up in real time.

Another observation (Fig. 4) is that truncation sub-sampling tends to dominate the quality loss in the viewport as the viewport moves away from the front face. This is observed in other videos and at higher bit rates. This can be mitigated with a finer granularity of LP, as the viewport after location switching is less likely to reach regions heavily distorted by truncation. We use 8 LPs spaced 45° apart.

B. Awareness of head movement direction

Exploiting head movement direction can further reduce the file size by assigning different TPs to left and right faces. If the head is moving to one side, a higher TP could be assigned to this side. Our adaptation is summarized in Fig. 5. The front face of the next chunk is rotated by LP such that the mean value of the predicted viewport lies within ±22.5°. Then, we consider four TP combinations: [0.4, 0.4], [0.4, 0.2], [0.2, 0.4], and [0.2, 0.2]. We first decide if the head motion is static enough to use TP of 0.2 on both side faces. Using Fig. 4, we choose ±10° as our TP decision boundary. If the viewport is predicted to be within ±10° for every frame in the next video chunk, TP of [0.2, 0.2] will be assigned. When this is not satisfied, TP of [0.2, 0.4] or [0.4, 0.2] will be considered, depending on the mean predicted viewport yaw angle over all frames in the chunk. We consider that the head is moving to the right (left) if the actual yaw angle is larger (smaller) for the last frame of the previous video chunk than for the first frame of that chunk. TP of [0.2, 0.4] will be assigned when the head is moving right and [0.2, 0.2] will be assigned when the head is moving left and [0.4, 0.2] will be assigned when the head is moving left and [0.4, 0.4] is used since we are not confident that the future viewport will be static nor that it will be on a particular side.

IV. Evaluation

We evaluate VRProj with a head movement trace-driven simulation with fixed network conditions. The key results are that when the viewport information is assumed to be perfectly known, VRProj on average has 2 (out of 100) of VMAF
score improvement over the JVET-TSP system. With a simple viewport prediction, the improvement in VMAF is 1.5.

Video Dataset: We use nine 360° videos provided by ITU-T [31]. Captured on various platforms while driving, walking, or skateboarding, the content includes sightseeing, nature, and sports. The videos are in uncompressed YUV format, with sizes from 10 to 30 GB. All videos have 8192x406 resolution and 60 FPS, except for “Balboa” and “Broadway” (6144x3072 60FPS), and “Chairlift” (8192x4096 30FPS). Sample frames are in Fig. 7. The dataset is in ERP format, which we convert to CMP using 360Lib [32].

User head movement dataset: We evaluate VRProj on a dataset of user head movement traces from [33], with a large variety of head motions from 0°/sec to 60°/sec. For each video, we assign one trace from the dataset as if it were the user movement of users watching that video.

End-to-end results: We implement VRProj in approximately 1000 lines of C++ and Matlab code. We emulate DASH-based [34] video streaming for both VRProj and the JVET-TSP system; a collection of TSP video is generated offline and adaptively fetched by the client during streaming. The server stores video chunks encoded at different rates. Videos are encoded with FFmpeg x265 codec with 2-pass average bitrate control. JVET-TSP stores video at 8 different LPs. For VRProj, each video is stored in 8 different LPs and 4 combinations of TPs. We evaluate VRProj at 5 and 10 Mbps in two modes, omniscient (Omni) and predictive (Pred). Fig. 8 provides an overview. System parameters (LPs and TPs) are decided each second. With Omni, parameters are based on the user’s actual viewport orientation in the future. With Pred, parameters are decided from linear regression based viewport prediction. Fig. 8(a) demonstrates the viewport prediction in Pred mode. Fig. 8(b) plots the LPs assigned for each chunk with respect to the front face orientation in the original dataset. Fig. 8(c) and (d) plot the TPs chosen for each video chunk. Fig. 8(e) plots the final viewport direction the user will experience after switching the front face orientation according to LP.

VRProj outperforms JVET-TSP in both Omni and Pred modes, as shown in Table I. In Omni, the gain of VRProj over JVET-TSP is greater since LP and TP adaptation leverages the knowledge of head movement. VMAF has a strong linear correlation with subjective Differential Mean Opinion Score [30], [35], so this improvement indicates that VRProj can provide better perceptual quality. VRProj also outperforms JVET-TSP in peak signal-to-noise ratio (PSNR), with average gains of 0.39dB (Omni) and 0.24dB (Pred) at 5Mbps, and 0.44dB and 0.21dB at 10Mbps. PSNR gains for individual videos ranged from 0.2dB for Balboa to 1.1dB for Trolley.

V. CONCLUSION

We presented an adaptive TSP projection scheme that optimizes the degree of truncation and quantization to improve video quality for a given headset motion. Both VMAF and PSNR results indicate that the gains can be significant for certain videos, while some improvement was found for all 9 videos tested. Future work could explore content-based adaptivity in the TSP system, or adding head motion adaptivity to tiling-based [4], [11]–[24] approaches.

![Fig. 7: Examples of video frames from our 360° video dataset.](image)

![Fig. 8: VRProj adapts LPs and TPs to head movement. “Omni” and “Pred” stand for omniscient and predictive simulation.](image)

<table>
<thead>
<tr>
<th>Video</th>
<th>5Mbps</th>
<th>10Mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Omni</td>
<td>Pred</td>
</tr>
<tr>
<td>Balboa</td>
<td>1.33</td>
<td>1.06</td>
</tr>
<tr>
<td>Broadway</td>
<td>1.71</td>
<td>1.57</td>
</tr>
<tr>
<td>Chairlift</td>
<td>1.91</td>
<td>1.28</td>
</tr>
<tr>
<td>Gaslamp</td>
<td>0.88</td>
<td>0.20</td>
</tr>
<tr>
<td>Harbor</td>
<td>1.03</td>
<td>0.16</td>
</tr>
<tr>
<td>Kite</td>
<td>2.96</td>
<td>2.46</td>
</tr>
<tr>
<td>Landing</td>
<td>1.73</td>
<td>1.34</td>
</tr>
<tr>
<td>Skateboard</td>
<td>2.30</td>
<td>1.54</td>
</tr>
<tr>
<td>Trolley</td>
<td>4.57</td>
<td>4.11</td>
</tr>
<tr>
<td>Average</td>
<td>2.05</td>
<td>1.52</td>
</tr>
</tbody>
</table>

TABLE I: VMAF gains of VRProj over JVET-TSP.
REFERENCES

