

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Arun, et al.

Let us quickly dive into how the current Visual and LiDAR SLAM

systems operate, why they need these ‘Loop-Closure’ modules, and

why the ‘Loop-Closure’ modules limit the efficiency of these sys-

tems. The state-of-the-art SLAM systems combine Camera/LiDAR

and odometry measurements from either IMUs (inertial measure-

ment units) or wheel encoders to locate themselves and map the

environment. Despite this fusion, error in the predicted trajectory

increases over time due to the accumulation of sensor errors. Loop

closure [3] modules exist within these Visual/LiDAR SLAM algo-

rithms to correct this global motion drift. They ensure a robot

revisiting a space predicts a location similar to the previous visit.

That is, the robots correlate the current visual observations with

past observations, ensure self-consistency of the trajectory, and

close the loop by correcting any inconsistencies to correct the tra-

jectory on a global scale. However, these much-needed motion

drift corrections are also the weakest links in Visual/LiDAR SLAM

systems as they increase the memory requirements, are compute-

intensive, and reduce the SLAM systems’ reliability. This has been

extensively studied previously [3, 49] and Section 3 quantifies this

problem further.

In WAIS, we overcome these challenges by designing a wire-

less sensing-aided SLAM system that is robust and deployable in

resource-constrained scenarios. WAIS achieves this using the Dual-

Layered design for the Wi-Fi-based global corrections and Visual

Sensor-based Local correction modules. WAIS is also designed to be

readily integrable into the existing Visual SLAM systems through

our sensor front-end WiROS as shown in Fig. 1. Essentially, WAIS

+ WiROS provides a drop-in replacement for loop-closure systems

in third-party SLAM systems. To achieve this, we surmount three

challenges in integrating Wi-Fi sensors into SLAM, allowing ready

integration of WAIS into existing SLAM systems to correct trajec-

tory drifts without relying on loop closure modules.

1. Compute-efficient integration of Wi-Fi and Visual SLAM:

WAIS’s first contribution lies in solving for a resource-efficient al-

ternative to loop-closure modules. A loop-closure module achieves

these drift-corrections via two independent operations: (a) iden-

tification of the loop-closure and (b) applying corrections to the

mapped environment, including the robot locations and any visual

landmarks that have accrued errors over time. WAIS proposes us-

ing deployed Wi-Fi access points (AP) as landmarks to track and

anchor the robot to the environment and correct for its localization

drifts. Intuitively, the unique MAC address of APs provides a readily

accessible feature identifier, removing the need for feature correla-

tion as needed for visual landmarks, simplifying the identification

operation.

Once the loop closures are identified, applying the necessary

corrections is imperative. These drift corrections are needed for (a)

‘local drifts,’ that accumulate due to integration errors in wheel

odometry, accelerometers, and gyroscopes create trajectory drifts

in a span of a few meters, and (b) ‘global drifts’3, that accumulate

over many tens of meters of travel.

Following this distinction, WAIS designs a two-layered system

to tackle each error independently. The first layer corrects the local

drifts in navigation and mapping using the Visual SLAM algorithms.

3Loop closure provides corrections to these global drifts only when the robot revisits
a region in the environment.

Here, any open-source SLAM system (with their loop-closure mod-

ules turned off) can be used; we evaluateWAISwith Kimera [44] and

Cartographer [18]. Additionally, WAIS can work purely with wheel

odometry without visual sensors for scenarios where mapping is

unnecessary. WAIS then designs the second layer – theWi-Fi SLAM

layer corrects for the global drifts of the navigation path, which

automatically corrects for the visually mapped features within the

environment. This dual-layered design has three merits: (a) enables

real-time corrections of trajectories by decoupling potentially noisy

wireless measurements from visual measurements and simplifying

the optimization, (b) makes WAIS extensible with existing SLAM

systems, and (c) showcases a viable method to integrate other RF

and acoustic sensors easily within the SLAM stack. Specifically, we

design WAIS to operate with commercially available Wi-Fi radios

and enterprise Wi-Fi network deployments to ensure wide use of

our system.

2. Real-time Wi-Fi parameter estimation: Designing this Wi-Fi

layer has additional challenges. The existing Wi-Fi-based SLAM

algorithms only perform end-to-end optimization [4, 19] and do not

furnish real-time estimates. There are two key issues with making

this system real-time. Firstly, to integrate the Wi-Fi measurements

and track the Wi-Fi APs, we compute the angle of arrival (or bear-

ing) at the robot of a received signal from a specific AP. These

bearings can be fused with odometer/IMU measurements to cor-

rect for the robot drift in the Wi-Fi layer. However, using existing

bearing extraction algorithms [4, 27] are compute-intensive, cre-

ating a bottleneck for our system. Secondly, before optimization,

we need to roughly initialize the location of our Wi-Fi APs (used

as landmarks) in our scenario. A poor initialization can lead to a

longer convergence time for the optimizer, further reducing the

timeliness of our system.

Here, WAIS introduces the second contribution. First, we design

a PCA-based Wi-Fi Bearing estimation algorithm. Via a simple

observation – multipath reflections, which corrupt the bearing

estimations, are random across small motions and can be effectively

averaged out over a few packets –we reduce the compute of existing

bearing estimations methods by over 200×. Second, we design a

smart initialization algorithm that uses the RSSI measurements to

predict the approximate AP location, which is further optimized

within the Wi-Fi SLAM algorithm.

3. Readily deploying WAIS: Before integration within the Wi-Fi

layer, the Wi-Fi sensor measurements must be calibrated and time-

synchronized to the measurements from the other sensing modali-

ties. To improve deployability, we provide our third and final contri-

bution. We develop and open source WiROS4 to provide out-of-box

integration with Robot OS (ROS) to furnish time-synchronized mea-

surements with other sensing modalities. Additionally, WiROS’s

core contribution lies in its wireless calibration framework to esti-

mate and apply real-time phase offsets accrued within the Wi-Fi

radio. This calibration is critical to ensure bias-free Wi-Fi-bearing

estimation during SLAM operation.

Evaluation highlights: To verify our claims, we have deployed

WAIS on a ground robot TurtleBot2 platform that is equipped with

a Hokuyo LiDAR and Intel Realsense D455 RGB-D camera with

a built-in IMU for deploying cartographer [18] and Kimera [44]

4https://github.com/ucsdwcsng/WiROS

WAIS: Leveraging WiFi for Resource-Efficient SLAM MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

Table 1: Literature Review: In comparison to the existing wireless, visual, and LiDAR-based SLAM systems, WAIS is the only

system that can be real-time, robust to NLOS, does not need ‘Loop-Closures,’ and any prior knowledge of the environment.

Algorithm
Real-Time

SLAM

Robust to

NLOS

Do not need

‘Loop-Closure’

Doesn’t need

prior Env. Info.

Integrable

into ROS

WSR [22] ✓ ✓ ✗ ✗ ✗

P2SLAM [4] ✗ ✓ ✗ ✗ ✗

WiDrone [10] ✓ ✓ ✓ ✗ ✗

Kimera (VIO) [44] ✓ ✗ ✗ ✓ ✓

Cartographer (LIO) [18] ✓ ✗ ✗ ✓ ✓

RSSI SLAM [13, 17] ✓ ✗ ✗ ✓ ✗

WAIS ✓ ✓ ✓ ✓ ✓

respectively. We equip it with a four-antenna off-the-shelf Wi-Fi

radio [48] as theWi-Fi sensor and useWiROS to integrate theWi-Fi

measurements with the ROS framework. We deploy the robot in

one large environment to collect data for demonstrating WAIS’s

compatibility with Kimera’s visual-inertial odometry (VIO) outputs.

Additionally, we use three open-sourced datasets [4] to demonstrate

WAIS’s deployability with Cartographer. Across these deployments,

the robot traverses for an overall time of 108 minutes and a distance

of 1625 m. Access points are deployed in the environment with

realistic deployment densities in all these datasets [1]. From these

evaluations, we observe WAIS

(1) achieves a median translation error of 70.8 cm and a median

orientation error of 2.6◦, on par with the state-of-the-art

Kimera [44] and Cartographer [18]. WAIS’s increased ro-

bustness by integrating Wi-Fi measurements is seen via the

improvements at the 90th percentile translation and orienta-

tion errors by ∼ 40% and ∼ 60%, respectively.

(2) only needs a total of 0.72 GB whereas Kimera needs 2.82 GB,

almost 4× lower. Cartographer and WAIS consume approxi-

mately equal amounts of memory.

(3) utilizes, on average, 0.75 fraction of a single CPU core, whereas

Cartographer utilizes over 3.2 CPU cores. WAIS is 4× more

compute-efficient. Additionally, Kimera consumes∼ 2×more

maximum compute during its operation 5.

2 RELATED WORK

WAIS’s design motivation is to develop a resource-efficient and

online SLAM algorithm. However, other works have considered

similar problems, and we discuss them in detail in this section.

These existing works span the fields of visual sensor-based SLAM,

RF sensors in SLAM, and RF sensor-based localization, mapping,

and tracking algorithms.

Table 1 summarizes these works at a high level considering five

essential requirements – SLAM systems should produce real-time

or online results, their sensing systems should be robust in non-

line-of-sight (NLOS) conditions, they should wholly circumvent

the need for loop closures, they should be deployable without prior

environment information, and they should be readily integrable

into ROS to ensure widescale deployment. The rest of the section

will carefully explore the current state of the art.

5The memory and compute consumption disparity between Kimera and Cartographer
is explored in Section 7; it is a consequence of LiDAR features’ sparsity compared to
Cameras.

Visual SLAM: SLAM for Indoor navigation has been actively pur-

sued by the robotics community for the past decade and has led

to a myriad of SLAM algorithms [18, 28, 37, 40, 55]. Most of these

algorithms extensively rely on LiDAR [18, 55] and/or cameras (both

monocular or RGBD) [28, 37, 40]. While these algorithms achieve

cm-accurate localization and feature-rich mapping of the environ-

ment, they tend to fail under poor lighting and feature-degenerate

conditions. These algorithms also rely on ‘loop closures’ for larger

spaces that require intensive computing and memory resources.

However, some algorithms try to resolve memory issues in loop-

closure detection and identification by (a) optimizing key-frame

and key-point detection [37] to reduce the number of key-frames

stored or (b) using a smart representation, like bag-of-words [44]

for efficient storage and retrieval. While these solutions reduce the

amount of memory required per step, the underlying problem of

linear memory consumption with distance traveled remains. Al-

ternatively, Navion [51] builds an ASIC implementation to explore

highly power-efficient VIO systems to provide accurate local odom-

etry. Nonetheless, this system will suffer from the high computing

and memory costs of loop closure modules. We foresee future work

combining the ideas presented in WAIS and Navion.

Decentralized SLAM: Some Decentralized SLAM works off-load

the memory intensive loop-closure and map updates [2, 8, 11] to

the cloud or edge devices. However, they rely on explicit loop

closures for motion drift corrections. Instead, we observe WAIS’s

dual-layered design can potentially be incorporated within these

works further to reduce the load on the robot’s computer.

RF-sensors for SLAM: RF-technology based SLAM implemen-

tations based on UWB [38, 53], BLE [23, 47], RFID [32, 33], or

backscatter devices [56] exist. However, these RF technologies are

not as ubiquitously deployed and have limited ranges compared

to Wi-Fi. Additionally, these systems do not provide an extensi-

ble framework to incorporate other SLAM works, do not allow

simultaneous mapping of the environment, and do not fuse these

measurements while keeping resource efficiency in mind. Instead,

WAIS’s Wi-Fi implementation can be extended to other RF sensors

that can measure the signal’s incoming angle of arrival [7, 58]. This

opens up the possibility of incorporating a large variety of BLE

beacons, UWB tags, and other WiFi devices as RF landmarks in

SLAM systems.

Wi-Fi-SLAM: There are a few existingworks [13, 17, 19, 30, 30] that

try to utilize Wi-Fi sensor readings to improve SLAM algorithms.

Unfortunately, most of these works use RSSI as the features metric,

which needs intensive spatial fingerprinting. RSSI is also known

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Arun, et al.

to vary drastically in dynamic indoor scenarios [34], making them

unsuitable metrics for Wi-Fi signals. Extending these RSSI-centric

methods to utilize fine-grained phase information used in WAIS

would not avoid the need for ‘loop-closure’ modules. In contrast,

WAIS defines more formalWi-Fi-bearing-based constraints for joint

optimization of robot and Wi-Fi AP poses while removing loop-

closure modules.

While there are recent works [4, 22] that utilize bearing mea-

surements for their SLAM implementations, WSR [22] does not

perform localization but just robot reconnaissance. On the other

hand, P2SLAM [4] performs an end-to-end optimization, preclud-

ing online SLAM predictions due to the convergence time of the

optimizer. Alternatively, [10] needs apriori information like the

Wi-Fi anchor’s locations within the environment. They additionally

require 1000 packets to be transmitted per second to furnish robot

location measurements. Alternatively, WAIS collects Wi-Fi packets

from the environment at 20 Hz, performs iterative optimization to

generate online drift-free trajectory estimates, and does not need

apriori information about the environment.

Wireless Calibration: Current works [15, 52] in wireless calibra-

tion requires exhaustive search and non-convex optimization over

a large number of variables, which could lead to a non-optimal cali-

bration solution or even lead to incorrect results due to local minima

in multipath-rich environments. Instead, WAIS re-formulates the

calibration estimation as a linear least squares to accurately es-

timate the calibration values in a convex manner with minimal

operational overhead.

3 WHY IS VISUAL SLAM RESOURCE
INEFFICIENT?

As we claimed in Section 1, current SLAM systems are memory and

compute expensive due to relying on loop closure modules [49]. We

first describe the loop-closure modules and then demonstrate their

detrimental effect on achieving resource-efficient SLAM through an

extensive measurement survey. We will then discuss how existing

Wi-Fi SLAM systems fall short of the requirements for the SLAM

algorithms.

3.1 Deeper look at loop closures

SLAMalgorithms achieve accurate localization andmapping through

‘local’ and ‘global’ drift corrections. Most wheeled robots use odom-

etry measurements from a combination of sensors, including IMUs,

Wheel Encoders, and Gyroscopes. These odometry measurements

are obtained by integrating the measurements from the wheel en-

coders, gyroscopes, or accelerometers, and they quickly accumulate

drift. These integration drifts can lead to trajectory errors of many

meters. Visual sensors like LiDAR and Cameras are used to over-

come these limitations. The change in positions of distinct visual

features is tracked for tens of seconds (tens to hundreds of frames

of data) to discern the relative motion of the robot. Fittingly, these

corrections are called ‘local drift’ corrections. As these visual fea-

tures are believed to be static, any changes in their position would

imply a specific robot motion, which is then estimated and used to

correct the drifts accrued by the odometry measurements. However,

the trajectory correction applied through feature tracking is still

incomplete, and when a robot traverses many hundreds of meters,

these incomplete corrections cause trajectory drift on the order of

meters. To make corrections for these ‘global drifts,’ we can use a

simple observation. When the robot revisits a region, its location

prediction must be identical to its previous prediction. This observa-

tion is realized by the ‘loop-closure’ modules [3] in SLAM systems

and is often the key to their performance over large distances.

A key step in applying loop closures is to detect when a region

is revisited. This is done by first identifying distinguishing visual

features and storing the locations of these features in the working

memory. Second, the currently observed features are correlated

with this bank of past observations to detect a loop closure [26, 50].

However, the storage of visual features and repetitive correlation

are culprits that increase memory and compute consumption, re-

spectively. Recognizing this drawback, recent works [37, 44] im-

prove upon this naive loop-closure system by employing key-frame

selection strategies and utilizing bag-of-words models to reduce

the number of frames and the size of features stored in memory.

Nonetheless, in the following subsection, we find that these tech-

niques are insufficient.

3.2 Detrimental effects of loop closure modules

To demonstrate these systems’ memory and compute requirements,

we run a robot across multiple environments spanning about 1.5km

of travel distance. The robot collects LiDARs, Cameras, Wi-Fi, and

Odometry (IMU) data. These sensing modalities are then fused

using Kimera [44], Cartographer [18], P2SLAM [4] and WAIS to

get optimized maps and the paths traversed.

Parallely, we record these algorithms’ memory and compute

consumption and report them as shown in Table 2. Column two

mentions the sensors used by each of the algorithms. We care about

compute, which is measured as a fraction of the total available

compute, to ensure the real-timeliness of our SLAM system. Addi-

tionally, the working memory (measured as the rate of increase in

RAM consumption) needed to correct the robot trajectories dictates

the distance (or the number of hours) of error-free operation.

To evaluate the scalability of current systems to smaller form

factor devices, we contrast the resources used by these SLAM al-

gorithms to the available resources on a Raspberry-Pi 4B [14] (a

typical 4 GB-RAM and a 4 CPU-core system6). The first two rows

showcase Kimera’s compute and memory consumption with and

without their loop closure module operational. In the latter, as ex-

pected, we see a 2× worse performance at the median. However,

loop closures are responsible for the 3× increase in compute and

a 7× reduction in error-free run time, indicating these modules’

detrimental effect on the SLAM resource efficiency. Similarly, we

can also see that the Cartographer [18] has high computing and

memory needs and cannot operate on a single RPI. Visual SLAM

systems, which rely on loop closures, cannot scale to lower form

factor devices.

3.3 Leveraging Wi-Fi for global corrections

An interesting observation is that the existing Wi-Fi-based SLAM

algorithms [4, 19, 22] demonstrate that they do not require loop

6Assuming a Raspberry Pi 4B operating at 32-bit Floating point precision and 27
GFLOPS [16]

WAIS: Leveraging WiFi for Resource-Efficient SLAM MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

Table 2: Motivation for WAIS: Accuracy, Memory and Compute Requirements for Various Sensor Combinations

Sensors

Used

Median

Accuracy (cm)

Real-Time Broad Coverage

Frame

Rate

Compute

(GFLOPS)

Fraction of

RPI Compute

Memory per

Frame (KB)

Memory

Rate (Mbps)

Life on

RPi4 (Hrs)

Kimera Camera+IMU 105 15 62.1 2.3 37 0.56 1.98

Kimera w/o LC Camera+IMU 196.6 15 20.8 0.77 5.3 0.08 13.9

Cartographer LiDAR+IMU 47.0 40 156.6 5.8 7.5 0.3 3.7

P2SLAM Wi-Fi+IMU 65.2 20 310.5 11.5 24.5 0.49 2.25

Odom Only IMU 441.3 100 4.05 0.15 0.09 0.01 111.2

Wi-Fi Only Wi-Fi+IMU 90 15 12.42 0.46 8 0.16 6.9

closure modules and thus, ideally, should have optimized mem-

ory and compute requirements. However, this is not the case due

to non-ideal sensor fusion techniques. The recent state of the art,

P2SLAM [4], needs at least 11.5 fractions of RPI’s (clearly impossi-

ble on a single RPI) and can only run for 2.25hrs before it runs out

of memory (assuming sufficient compute). In P2SLAM, the authors

get the optimized robot path at the end of the robot’s navigation,

where they perform an end-to-end optimization. This end-to-end

optimization may be ideal for applying final corrections to the

reconstructed maps, but it makes the system non-real-time and

memory-hungry. Thus, one of the key contributions of WAIS is to

design a real-time Wi-Fi SLAM (Section 4.2) and a more efficient

feature extraction module for the Wi-Fi sensors (Section 5.1) that

significantly reduces the memory and compute requirements as

shown in the table as, ‘Wi-Fi Only.’ In the following section, we

will demonstrate WAIS’s ability to run on a single RPI module in

real-time with a 7-hour error-free operation time while also provid-

ing 2.5× and 6× improvement over Kimera’s trajectory estimates

without loop closures and odometry only based dead-reckoning.

4 WI-FI LAYER AND RESOURCE EFFICIENT
SLAM

WAIS circumvents the need for loop-closures by leveraging Wi-

Fi access points in the environments as much-needed landmarks.

Specifically, we seek to optimize the robot’s position and head-

ing direction (yaw) in the 3D space 7 by efficiently fusing Wi-Fi

measurements and odometry measurements with visual measure-

ments to map the environment simultaneously as well. However,

systems [4], which naively fuse Wi-Fi measurements, do not pro-

vide the required improvements in computing and memory. Finally,

many of the advantages discussed here are obtained by using visual

landmarks [20, 39] to anchor the robot to its environment and pro-

vide accurate trajectory estimates without loop closures. Similarly,

this work takes a significant step in bringing “RF-landmarks” into

the purview of the SLAM stack.

WAISmakes three concrete contributions to optimally fuseWi-Fi

measurements to enable resource-efficient SLAM. First, it splits the

estimation of local and global drift corrections into two independent

optimization processes, develops a message-passing framework be-

tween the two processes, and reduces the number of variables each

7The visual map and features built by the VIO/LIO are in 3D space, whereas the robot
is constrained to the ground plane

optimization encounters (Section 4.1-4.3). This provides a compute-

efficient way to incorporate Wi-Fi measurements into a SLAM

system. Second, WAIS observes angle of arrival (or bearing) esti-

mates of the Wi-Fi signals received at the robot from APs are the

most reliable way to track the APs and utilize them as landmarks.

However, current bearing estimation frameworks [4, 27] are com-

puted inefficiently. Instead, WAIS develops a new framework for

bearing estimation, improving compute efficiency by ∼ 200× (Sec-

tion 5.1). Third, to improve WAIS’s deployability, we open-source

our Wi-Fi sensing platform WiROS and develop a wireless calibra-

tion framework to furnish bias-free bearing estimates in a real-time

and time-synchronized manner toWAIS’s optimization frameworks

(Section 5.2).

4.1 Dual layered optimization

The first idea to integrate Wi-Fi measurements would be to co-

optimize them along with visual measurements [31, 45] in a tightly

coupled fashion. For instance, by incorporating them within the

factor graph of an available SLAM system [44]. Unfortunately, the

discovery and addition of new APs and global drift corrections

introduce brief periods of instability (order of a few seconds) to the

robot’s trajectory estimates. These instabilities can introduce large

computation overheads as they may also demand corrections to the

tracked visual landmarks and map.

Instead, WAIS proposes a dual-layered design to tackle local and

global drifts independently. The local drift optimizer corrects the

robot’s trajectory and builds a map based on visual features. The

finer resolution of visual features allows for fine-grained corrections

for a few tens of meters. The baton is then passed to WAIS’s Wi-Fi

graph to handle larger errors due to global drift. This factor graph

optimizer relies on the bearings of the incoming Wi-Fi signals 8.

These bearing measurements allow the robot to anchor itself to the

environment and adequately correct for the global drifts. But unlike

prior work [4, 13], WAIS does not use end-end optimization, instead

opts to use incremental smoothing and mapping (iSAM [24]) to

provide real-time pose estimates.

4.2 Building the Wi-Fi-Graph

We build the Wi-Fi factor graph discussed in the previous section

as shown in Fig. 2. Specifically, consider the state space at time C , (C .

It is a set of robot poses and access point locations over C time steps

8Previous works [4, 19] have shown bearings to be a preferred Wi-Fi-based
measurement

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Arun, et al.

shown in Fig. 3(b) are vulnerable to aliasing - they can only mea-

sure bearings in a 180◦ range (i.e. the top half plane in Fig. 3(b)) at a

time, as there is no distinction between signals coming from oppo-

site sides of the array. This limitation is reflected in the search space

of bearing angles in Eq. (4). Furthermore, as shown in Fig. 4(bot-

tom), these arrays have poorer accuracy when Wi-Fi signals arrive

nearly parallel to the array (near ±90). To maximize the range of

measured angles, we resolve this ambiguity by adopting a square

antenna array, which does not suffer from aliasing as seen from

Fig. 4(top). However, we cannot extend the range to the entire 360◦

due to ambiguity present for Wi-Fi signals arriving from behind

the robot. Transitioning to a square array changes the differential

phases measured (Eq. (3)) as,

q< (\) = −
2c

_
(0G< cos(\) + 0

~
< sin(\)), (5)

the relative position of antenna< is (0G<, 0
~
<) with respect to the

first antenna. Hence, WAIS finds a trade-off between resolution and

aliasing to resolve angles from −160◦ to 160◦.

5.2 Quick and easy calibration

The bearing measurements computed in Section 5.1 will be erro-

neous without appropriately calibrating the Wi-Fi sensor. Calibrat-

ing our Wi-Fi sensor should remove any measurement bias and be

easy to perform. Generally, the calibration can vary for different

Wi-Fi channels and is unique for each hardware. Hence, WAIS de-

velops an easy-to-deploy and accurate calibration framework for

the tractability of our Wi-Fi sensor for SLAM applications.

We apply independent phase corrections across each antenna and

frequency measurement to calibrate our raw Wi-Fi measurements,

as given by the phase calibration matrix � ,

� = exp(9Φ) ∈ C"ant×#sub ,

across" antennas and# frequencies, whereΦ ∈ R"ant×#sub . Given

a raw CSI measurement from the CSI Node, -C ∈ C"ant×#sub , the

calibration is applied as

- cal
C = � ⊙ -C ,

where ⊙ is the Hadamard (element-wise) product.

We deploy the robot in a relatively multipath-free environment.

Using the robot poses (®?C = (?GC , ?
~
C , ?

\
C) ∈ (� (2)) and transmitter

location (®I ∈ R2), we first compute the expected ground truth

bearings (\C). These can then be converted to expected Wi-Fi CSI

measurements (-̂C ∈ C
"ant×#sub).

\C =
c

2
−

(

arctan

(

?
~
C − I~

?GC − IG

)

− ?\C

)

; -̂
8, 9
C = exp(jq8 (\C))

where, q8 is the relative phase accumulated at the 8th antenna from

Eq. (3) or Eq. (5). _ is the wavelength of the center frequency for the

Wi-Fi channel in consideration. Note that we assume this expected

measurement has equal response across the frequency subcarriers

as we assume time-of-flight is zero.

Assuming a strong line-of-sight path signal is present in our

measurements, we can expect the phases ∠-̂C ≈ ∠-
cal
C . Note that

our assumption is reasonable as the calibration data is collected

in a relatively open environment with no blockages to the signal.

Consequently, we can suppress the phase difference induced by

bearings as

-
sup
C = -C ⊙ conj(-̂C)

This leaves the remaining calibration phase � in -
sup
C . However,

each Wi-Fi measurement may have multiple reflected paths and

hardware-centric Gaussian noise. To suppress these noise terms, we

can recall the hints previously discussed in Section 5.1. One, reflec-

tions are inconsistent across different locations; two, averaging can

suppress Gaussian noise. Hence, the best calibration estimate is the

strongest remaining component in the suppressed -
sup
C measure-

ments. We can leverage Principle Component Analysis, as in PCAB

(Section 5.1), to extract this strongest component in our calibration

data as

-flat
C = fla�en(-

sup
C), -flat

C ∈ C"ant#sub

W =

[

, flat
0 , flat

1 · · · , flat
)

]

U, S,V = SVD(X)

Φ
coarse

= ∠reshape(U0), �coarse
= exp(9Φcoarse)

where ‘flatten’ converts the matrix into a vector, SVD computes

the full singular-value decomposition, ‘reshape’ converts the vector

back into a matrix of the original dimensions, and ∠ computes

the phase of the complex numbers. U0 is the first and strongest

principal component of X. However, as indicated, this calibration

is a coarse estimate. The expectation is for the calibration matrix

to consist of unit-norm elements, but the principle component, U0,

is a unit-norm vector, violating this property. Hence, we need to

re-project �coarse onto a valid space of calibrations. To find a valid

calibration,�fine, that is close to�coarse, we note that�fine must be

orthogonal to the other vectors in U, so we try to find a fine-tuned

calibration Φ
fine which has the lowest norm when it is projected

onto U[1:] .

Φ
fine

= min
Φ

| |U)[1:] fla�en(exp(9Φ)) | |
2
2; �

fine
= exp(9Φfine)

where U[1:] is the orthogonal space, and we minimize for Φ us-

ing Levenberg-Marquardt [25] algorithm with an initialization of

Φ
coarse. The wireless phase calibration matrix �fine is recovered

through this fine-tuning. We will evaluate the accuracy and versa-

tility of this calibration in Section 7.

6 IMPLEMENTATION

We use the following setup to deploy the dual-layered Wi-Fi and

VIO/LIO graph optimization system.

Hardware: We deploy WAIS on the Turtlebot 2 platform. We

attach an off-the-shelf Wi-Fi radio [5] to the Turtlebot for Wi-Fi CSI

data collection. Then, we place a few similar APs near the ceiling at

a density of roughly one every ten meters. We transmit on channel

42 of 5GHz Wi-Fi. We then use WiROS (discussed in Section 5) to

collect channel state information (CSI) data from all the APs at the

Wi-Fi radio on the robot. Our robot also has a Hokuyo UTM-30LX

LiDAR and an Intel D455 RGBD camera with an IMU.

Software: The Turtlebot is controlled by a laptop running the

Robot Operating System (ROS-Kinetic), which manages all sensor

WAIS: Leveraging WiFi for Resource-Efficient SLAM MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

Practice_Design_-_MR_Wireless/High_Density_Wi-Fi_Deployments.
[2] Fawad Ahmad, Hang Qiu, Ray Eells, Fan Bai, and Ramesh Govindan. 2020.

CarMap: Fast 3D Feature Map Updates for Automobiles.. In NSDI. 1063–1081.
[3] Saba Arshad and Gon-Woo Kim. 2021. Role of deep learning in loop closure

detection for visual and lidar slam: A survey. Sensors 21, 4 (2021), 1243.
[4] Aditya Arun, Roshan Ayyalasomayajula, William Hunter, and Dinesh Bharadia.

2022. P2SLAM: Bearing based WiFi SLAM for Indoor Robots. IEEE Robotics and
Automation Letters (2022).

[5] ASUS. 2022. Asus RT-AC86U router. https://www.asus.com/us/networking-iot-
servers/wifi-routers/asus-wifi-routers/rt-ac86u/, journal=ASUS USA.

[6] Roshan Ayyalasomayajula, Aditya Arun, Chenfeng Wu, Sanatan Sharma, Ab-
hishek Rajkumar Sethi, Deepak Vasisht, andDinesh Bharadia. 2020. Deep learning
based wireless localization for indoor navigation. In Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking. 1–14.

[7] Roshan Ayyalasomayajula, Deepak Vasisht, and Dinesh Bharadia. 2018. BLoc: CSI-
based accurate localization for BLE tags. In Proceedings of the 14th International
Conference on emerging Networking EXperiments and Technologies. 126–138.

[8] Ali J Ben Ali, Marziye Kouroshli, Sofiya Semenova, Zakieh Sadat Hashemifar,
Steven Y Ko, and Karthik Dantu. 2022. Edge-SLAM: Edge-assisted visual simul-
taneous localization and mapping. ACM Transactions on Embedded Computing
Systems 22, 1 (2022), 1–31.

[9] Tara Boroushaki, Laura Dodds, Nazish Naeem, and Fadel Adib. 2022. FuseBot:
RF-Visual Mechanical Search. Robotics: Science and Systems 2022 (2022).

[10] Guoxuan Chi, Zheng Yang, Jingao Xu, Chenshu Wu, Jialin Zhang, Jianzhe Liang,
and Yunhao Liu. 2022. Wi-drone: wi-fi-based 6-DoF tracking for indoor drone
flight control. In Proceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services. 56–68.

[11] Titus Cieslewski, Siddharth Choudhary, and Davide Scaramuzza. 2018. Data-
efficient decentralized visual SLAM. In 2018 IEEE international conference on
robotics and automation (ICRA). IEEE, 2466–2473.

[12] IEEE Computer Society LAN/MAN Standards Committee et al. 2007. IEEE Stan-
dard for Information technology-Telecommunications and information exchange
between systems-Local and metropolitan area networks-Specific requirements
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. IEEE Std 802.11ˆ (2007).

[13] Brian Ferris, Dieter Fox, and Neil D Lawrence. 2007. Wifi-slam using gaussian
process latent variable models.. In IJCAI, Vol. 7. 2480–2485.

[14] Raspberry Pi Foundation. [n. d.]. Teach, learn, and make with the Raspberry Pi
Foundation. https://www.raspberrypi.org/

[15] Wei Gong and Jiangchuan Liu. 2018. RoArray: Towards more robust indoor
localization using sparse recovery with commodity WiFi. IEEE Transactions on
Mobile Computing 18, 6 (2018), 1380–1392.

[16] VMW Research Group. 2023. The GFLOPS/W of the various machines in the
VMW Research Group. https://web.eece.maine.edu/~vweaver/group/green_
machines.html Accessed: 2023-11-29.

[17] Zakieh S Hashemifar, Charuvahan Adhivarahan, Anand Balakrishnan, and
Karthik Dantu. 2019. Augmenting visual SLAM with Wi-Fi sensing for indoor
applications. Autonomous Robots 43, 8 (2019), 2245–2260.

[18] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. 2016. Real-time
loop closure in 2D LIDAR SLAM. In 2016 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 1271–1278.

[19] Joseph Huang, David Millman, Morgan Quigley, David Stavens, Sebastian Thrun,
and Alok Aggarwal. 2011. Efficient, generalized indoor wifi graphslam. In 2011
IEEE international conference on robotics and automation. IEEE, 1038–1043.

[20] Jiunn-Kai Huang, Shoutian Wang, Maani Ghaffari, and Jessy W Grizzle. 2021.
LiDARTag: A real-time fiducial tag system for point clouds. IEEE Robotics and
Automation Letters 6, 3 (2021), 4875–4882.

[21] Vadim Indelman, Stephen Williams, Michael Kaess, and Frank Dellaert. 2012.
Factor graph based incremental smoothing in inertial navigation systems. In 2012
15th International Conference on Information Fusion. IEEE, 2154–2161.

[22] Ninad Jadhav, Weiying Wang, Diana Zhang, Oussama Khatib, Swarun Kumar,
and Stephanie Gil. 2020. WSR: A WiFi sensor for collaborative robotics. arXiv
preprint arXiv:2012.04174 (2020).

[23] Maani Ghaffari Jadidi, Mitesh Patel, Jaime Valls Miro, Gamini Dissanayake, Jacob
Biehl, and Andreas Girgensohn. 2018. A radio-inertial localization and tracking
system with BLE beacons prior maps. In 2018 International Conference on Indoor
Positioning and Indoor Navigation (IPIN). IEEE, 206–212.

[24] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John J Leonard,
and Frank Dellaert. 2012. iSAM2: Incremental smoothing and mapping using the
Bayes tree. The International Journal of Robotics Research 31, 2 (2012), 216–235.

[25] Carl T Kelley. 1999. Iterative methods for optimization. SIAM.
[26] Giseop Kim and Ayoung Kim. 2018. Scan Context: Egocentric Spatial Descriptor

for Place Recognition within 3D Point Cloud Map. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems. Madrid.

[27] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and Sachin Katti. 2015. SpotFi:
Decimeter Level Localization Using Wi-Fi (SIGCOMM).

[28] M. Labbé. 2018. RTAB-Map as an Open-Source Lidar and Visual SLAM Library
for Large-Scale and Long-Term Online Operation.

[29] Pierre-Yves Lajoie, Siyi Hu, Giovanni Beltrame, and Luca Carlone. 2019. Modeling
perceptual aliasing in slam via discrete–continuous graphical models. IEEE
Robotics and Automation Letters 4, 2 (2019), 1232–1239.

[30] Ran Liu, Sumudu Hasala Marakkalage, Madhushanka Padmal,
Thiruketheeswaran Shaganan, Chau Yuen, Yong Liang Guan, and U-Xuan Tan.
2019. Collaborative SLAM based on Wifi Fingerprint Similarity and Motion
Information. IEEE Internet of Things Journal 7, 3 (2019), 1826–1840.

[31] Bruce D Lucas, Takeo Kanade, et al. 1981. An iterative image registration technique
with an application to stereo vision. Vol. 81. Vancouver.

[32] Zhihong Luo, Qiping Zhang, Yunfei Ma, Manish Singh, and Fadel Adib. 2019. 3D
backscatter localization for fine-grained robotics. In NSDI. Boston, Massachusetts,
765–782.

[33] Yunfei Ma, Nicholas Selby, and Fadel Adib. 2017. Drone relays for battery-free
networks. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication. 335–347.

[34] Yongsen Ma, Gang Zhou, and Shuangquan Wang. 2019. WiFi sensing with
channel state information: A survey. ACM Computing Surveys (CSUR) 52, 3
(2019), 1–36.

[35] NathanMelenbrink, JustinWerfel, and AchimMenges. 2020. On-site autonomous
construction robots: Towards unsupervised building. Automation in construction
119 (2020), 103312.

[36] Piotr Mirowski, Tin Kam Ho, Saehoon Yi, and Michael MacDonald. 2013. Sig-
nalSLAM: Simultaneous localization and mapping with mixed WiFi, Bluetooth,
LTE and magnetic signals. In International Conference on Indoor Positioning and
Indoor Navigation. IEEE, 1–10.

[37] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. 2015. ORB-
SLAM: a versatile and accurate monocular SLAM system. IEEE transactions on
robotics 31, 5 (2015), 1147–1163.

[38] Thien-Minh Nguyen, Shenghai Yuan, Muqing Cao, Thien Hoang Nguyen, and
Lihua Xie. 2021. VIRAL SLAM: Tightly Coupled Camera-IMU-UWB-Lidar SLAM.
arXiv preprint arXiv:2105.03296 (2021).

[39] Edwin Olson. 2011. AprilTag: A robust and flexible visual fiducial system. In 2011
IEEE international conference on robotics and automation. IEEE, 3400–3407.

[40] Tong Qin, Peiliang Li, and Shaojie Shen. 2018. Vins-mono: A robust and versatile
monocular visual-inertial state estimator. IEEE Transactions on Robotics 34, 4
(2018), 1004–1020.

[41] Raspberry Pi Ltd. 2023. Raspberry Pi 5. Raspberry Pi Ltd. https://datasheets.
raspberrypi.com/rpi5/raspberry-pi-5-product-brief.pdf.

[42] V. Reijgwart, A. Millane, H. Oleynikova, R. Siegwart, C. Cadena, and J. Nieto.
2020. Voxgraph: Globally Consistent, Volumetric Mapping Using Signed Distance
Function Submaps. IEEE Robotics and Automation Letters (2020).

[43] All The Research. Oct 2021. Autonomous Last Mile Delivery Market by Platform
- Global Forecasts 2021 to 2027. https://www.alltheresearch.com/report/787/
autonomous-last-mile-delivery-market Accessed: 2022-03-23.

[44] Antoni Rosinol, Andrew Violette, Marcus Abate, Nathan Hughes, Yun Chang,
Jingnan Shi, Arjun Gupta, and Luca Carlone. 2021. Kimera: From SLAM to spatial
perception with 3D dynamic scene graphs. The International Journal of Robotics
Research 40, 12-14 (2021), 1510–1546.

[45] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An
efficient alternative to SIFT or SURF. In 2011 International conference on computer
vision. Ieee, 2564–2571.

[46] Sebastian Sadowski and Petros Spachos. 2018. Rssi-based indoor localization
with the internet of things. IEEE access 6 (2018), 30149–30161.

[47] Akihiro Sato, Madoka Nakajima, and Naohiko Kohtake. 2019. Rapid BLE beacon
localization with range-only EKF-SLAM using beacon interval constraint. In 2019
International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE,
1–8.

[48] Matthias Schulz, Daniel Wegemer, and Matthias Hollick. 2017. Nexmon: The
C-based Firmware Patching Framework. https://nexmon.org.

[49] Sofiya Semenova, Steven Y Ko, Yu David Liu, Lukasz Ziarek, and Karthik Dantu.
2022. A quantitative analysis of system bottlenecks in visual SLAM. In Proceedings
of the 23rd Annual International Workshop on Mobile Computing Systems and
Applications. 74–80.

[50] Tixiao Shan and Brendan Englot. 2018. LeGO-LOAM: Lightweight and Ground-
Optimized Lidar Odometry and Mapping on Variable Terrain. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE, 4758–4765.

[51] Amr Suleiman, Zhengdong Zhang, Luca Carlone, Sertac Karaman, and Vivienne
Sze. 2019. Navion: A 2-mw fully integrated real-time visual-inertial odometry
accelerator for autonomous navigation of nano drones. IEEE Journal of Solid-State
Circuits 54, 4 (2019), 1106–1119.

[52] Ju Wang, Jie Xiong, Hongbo Jiang, Xiaojiang Chen, and Dingyi Fang. 2017. D-
watch: Embracing “bad” multipaths for device-free localization with cots rfid
devices. IEEE/ACM Transactions on Networking 25, 6 (2017), 3559–3572.

[53] Weiying Wang, Anne Kemmeren, Daniel Son, Javier Alonso-Mora, and Stephanie
Gil. 2022. Wi-Closure: Reliable and Efficient Search of Inter-robot Loop Closures
Using Wireless Sensing. arXiv preprint arXiv:2210.01320 (2022).

[54] Jie Xiong and Kyle Jamieson. 2013. ArrayTrack: A Fine-grained Indoor Location
System (NSDI).

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Arun, et al.

[55] Ji Zhang and Sanjiv Singh. 2014. LOAM: Lidar odometry and mapping in real-
time.. In Robotics: Science and systems, Vol. 2. Berkeley, CA, 1–9.

[56] Shengkai Zhang, Wei Wang, Sheyang Tang, Shi Jin, and Tao Jiang. 2020. Robot-
assisted backscatter localization for iot applications. IEEE Transactions onWireless
Communications 19, 9 (2020), 5807–5818.

[57] Zhengyou Zhang. 1997. Parameter estimation techniques: A tutorial with appli-
cation to conic fitting. Image and vision Computing 15, 1 (1997), 59–76.

[58] Minghui Zhao, Tyler Chang, Aditya Arun, Roshan Ayyalasomayajula, Chi Zhang,
and Dinesh Bharadia. 2021. ULoc: Low-Power, Scalable and cm-Accurate UWB-
Tag Localization and Tracking for Indoor Applications. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies 5, 3 (2021), 1–31.

[59] Han Zou, Chun-Lin Chen, Maoxun Li, Jianfei Yang, Yuxun Zhou, Lihua Xie, and
Costas J. Spanos. 2020. Adversarial Learning-Enabled Automatic WiFi Indoor
Radio Map Construction and Adaptation With Mobile Robot. IEEE Internet of
Things Journal 7, 8 (2020), 6946–6954. https://doi.org/10.1109/JIOT.2020.2979413

