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ABSTRACT
Terahertz (THz) communications are a promising technol-
ogy for 6G and beyond wireless systems, offering ultra-broad
bandwidth and thus data rates of Terabit-per-second (Tbps).
However, accurate channel modeling and characterization
are fundamental for the design of THz communications.
Relying on channel measurements, traditional statistical
channel modeling methods suffer from low accuracy due
to the assumed certain distributions and empirical parame-
ters. Moreover, acquiring extensive channel measurement
is time-consuming and expensive in the THz band. To ad-
dress these challenges, a transfer generative adversarial net-
work (T-GAN) based modeling method is proposed in the
THz band, which exploits the advantage of GAN in model-
ing the complex distribution. Moreover, the transfer learn-
ing technique is introduced in T-GAN, which transfers the
knowledge stored in a pre-trained model based on simulated
data, to a new model based on a small amount of measured
data. The simulation data is generated by the standard chan-
nel model from 3rd generation partnerships project (3GPP),
which contains the knowledge that can be transferred to
reduce the demand of measurement data and improve the
accuracy of T-GAN. Experimental results reveal that the dis-
tribution of power delay profiles (PDPs) generated by the
proposed T-GAN method shows good agreement with mea-
surement. Moreover, T-GAN achieves good performance in
channel modeling, with 9 dB improved root-mean-square
error (RMSE) and higher Structure Similarity Index Measure
(SSIM), compared with traditional 3GPP method.
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1 INTRODUCTION
As the number of interconnected devices continues to grow
exponentially, the sixth generation (6G) is expected to achieve
intelligent connections of everything, anywhere, anytime [2],
with data rates reaching Terabit-per-second (Tbps). To meet
the demand, Terahertz (THz) communications have emerged
as a vital technology of 6G systems, due to the ultra-broad
bandwidth ranging from tens of GHz to hundreds of GHz [3].
The THz band is a promising solution to address the spec-
trum scarcity and capacity limitations of current wireless
systems, and enable new applications, such as wireless cog-
nition, localization/positioning, integrated sensing and com-
munication.

To design reliable THz wireless systems, one fundamental
challenge lies in developing an accurate channel model to
portray the propagation phenomena. Due to the high fre-
quencies, new characteristics occur in the THz band, such
as frequency-, distance- and environment-dependent molec-
ular absorption and rough-surface diffusely scattering. Due
to these attributes, channel modeling needs to be properly
conducted to capture the THz characteristics. However, tra-
ditional statistical channel modeling methods suffer from
the problem of low accuracy with the assumed certain distri-
butions and empirical parameters. For example, a geometric
based stochastic channel model (GSCM) assumes that the
positions of scatters follow certain statistical distributions,
such as the uniform distribution within a circle around the
transmitters and receivers [8]. However, the positions of
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scatters are hard to characterize by certain statistical distri-
butions, making the GSCM not accurate for utilization in
the THz band. Moreover, it is time-consuming and costly
to acquire extensive channel measurement for THz channel
modeling. To this end, an accurate channel modeling method
with limited measurement data for the THz band is needed.

Recently, deep learning (DL) is popular and widely ap-
plied in wireless communications. Among different kinds
of DL methods, the generative adversarial network (GAN)
has the advantage of modeling complex distribution accu-
rately without any statistical assumptions, based on which
GAN can be utilized to develop channel models. The authors
in [7] train GAN to approximate the probability distribu-
tion functions (PDFs) of stochastic channel response. In [11],
GAN is applied to generate channel samples close to the
distribution of original channel samples. The researchers
in [6] model the channel with GAN through channel input-
output measurements. In [10], a model-driven GAN-based
channel modeling method is developed in intelligent reflect-
ing surface (IRS) aided communication system. All of the
aforementioned works train the GAN network with a large
number of synthetic channel samples, generated by the con-
ventional channel models. This causes mismatch between the
formulated GAN models and the models developed based on
measurement data. Therefore, incorporating measurement
data into the training and testing of the GAN network is
necessary to overcome this limitation. Nevertheless, it is im-
practical to leverage a large amount of measurement data in
designing the GAN.

In this paper, a transfer GAN (T-GAN)-based THz tempo-
ral channel modeling method is proposed, which models the
channel by learning the distribution of power delay profile
(PDP). PDP indicates the dispersion of power over the time
delay, which can well characterize the channel in the tem-
poral domain. Moreover, to tackle the challenge of limited
channel measurement in the THz band, the transfer learn-
ing technique is introduced in T-GAN, which transfers the
knowledge stored in a pre-trained model based on synthetic
data from 3GPP standardized channel simulation to a new
model based on a small amount of measured data [4, 9]. This
can alleviate the demand of large amount of measurement
data for training and improve the accuracy of T-GAN, since
the synthetic data can serve as a good compensation for
the initialization of GAN network. Furthermore, the perfor-
mance of T-GAN in modeling the channel distribution is
validated by real measurement [5].

The contributions of this paper are listed as follows.

• We propose a T-GAN based THz channel model-
ing method, in which a GAN is designed to capture
the distribution of PDPs of the THz channel, by train-
ing on the dataset of PDP samples.

• To tackle the challenge of limited measurement
data for THz channel modeling, transfer learning
is further exploited by T-GAN, which reduces the
size requirement of training dataset, and enhances
the performance of T-GAN, through transferring the
knowledge stored in a pre-trained model based on
3GPP simulated data to a new model based on a small
amount of measured data.

The rest of the sections are organized as follows. Sec. 2
details the proposed T-GAN based channel modeling method.
Sec. 3 demonstrates the performance of the proposed T-GAN
method. The paper is concluded in Sec. 4.

Notation: 𝑎 is a scalar. a denotes a vector. A represents a
matrix. E{·} describes the expectation. ∇ denotes the gradi-
ent operation. ∥·∥ represent the L2 norm. I𝑁 defines an 𝑁

dimensional identity matrix. N denotes the normal distribu-
tion.

2 TRANSFER GAN (T-GAN) BASED
CHANNEL MODELING

In this section, the channel modeling problem is first for-
mulated into a channel distribution learning problem. Then,
the proposed GAN in T-GAN method is elaborated. Finally,
T-GAN is presented.

2.1 Problem Formulation
The THz channel can be represented as

ℎ(𝜏) =
𝐿−1∑︁
𝑙=0

𝛼𝑙𝑒
𝑗𝜙𝑙𝛿 (𝜏 − 𝜏𝑙 ), (1)

where 𝜏𝑙 denotes the delay of the 𝑙𝑡ℎ multi-path component
(MPC), 𝐿 denotes the number of MPCs, 𝛼𝑙 refers to the path
gain and 𝜙𝑙 represents the phase of the corresponding MPC.
Moreover, PDP is an important feature to characterize the
channel in the temporal domain, which represents the re-
ceived power with respect to the delay in a multi-path chan-
nel. It can be expressed as

𝑃 (𝜏) = |ℎ(𝜏) |2, (2)

Then, the channel modeling problem is exploited by learning
the distribution of PDPs denoted by 𝑝𝑟 , which is difficult to
be analytically represented. Instead, the distribution 𝑝𝑟 can
be implicitly captured by generating fake PDP samples with
distribution 𝑝𝑔, such that the generated distribution 𝑝𝑔 of
PDPs can match the actual distribution 𝑝𝑟 .

2.2 Proposed GAN
The GAN network is proposed to learn the distribution of
PDPs, with the framework depicted in Fig 1. The GAN con-
sists of two sub-networks, namely, generator and discrimina-
tor. The generator is aimed at generating fake samples 𝐺 (𝑧)
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Figure 1: Framework of GAN.

to fool the discriminator, while the discriminator tries to
distinguish between real samples 𝑥 and fake samples 𝐺 (𝑧).

The input to the generator is a noise vector 𝑧 with dimen-
sion 𝑛𝑧 = 100, which is sampled from the probability density
function N(0, 𝜎2I𝑛𝑧 ). The generator consists of five dense
layers, and the numbers of neurons in the dense layers are
128, 128, 128, 128, 401, respectively. It is worth noting that
the size of the output layer is equal to the size of PDP. The ac-
tivation function of the first four dense layers is LeakyReLU
function, which can speed up the convergence and avoid the
gradient vanishing problem. The formula of the LeakyReLU
function is expressed as

𝑓 (𝑥) =
{
𝑥, if 𝑥 ≥ 0
𝛼𝑥, if 𝑥 < 0

, (3)

where 𝛼 is the slope coefficient when the value of neuron 𝑥 is
negative. In addition to the LeakyReLU function, a Sigmoid
function is utilized in the last layer, which maps the output
to the range of [0, 1]. The Sigmoid function is defined as

𝑓 (𝑥) = 1
1 + 𝑒−𝑥

. (4)

After going through the dense layers and activation functions
in the generator, the input noise vectors are transformed into
the generated samples. Then, the generated samples 𝐺 (𝑧)
together with real samples 𝑥 are passed to the discriminator.

The discriminator is designed to distinguish between gen-
erated samples and real samples. The numbers of neurons
for the five dense layers in the discriminator are 512, 256,
128, 64, 1, respectively. The activation function chosen for
the first 4 layers is the LeakyReLU function as introduced
before, while the final output of the discriminator 𝐷 (𝑥) and
𝐷 (𝐺 (𝑧)) are activated linearly.
Then, the generator and discriminator are trained in an

adversarial manner, which can be considered as a two-player
zero-sum minimax game. Specifically, the training objective
can be represented by

min
𝐺

max
𝐷
E𝒙∼𝑝𝑟 [𝐷 (𝒙)]+E𝒛∼𝑝𝑧 [(1 − 𝐷 (𝐺 (𝒛)))]

+_E�̃� [(∥∇�̃�𝐷 (�̃�)∥ − 1)2)],
(5)

where 𝑝𝑟 and 𝑝𝑧 represent the distributions of real channels
and noise vector, respectively. The generator minimizes the

Figure 2: Framework of T-GAN.

probability (1 − 𝐷 (𝐺 (𝑧)) that the generated sample is de-
tected as fake by the discriminator, while the discriminator
maximizes this probability. Therefore, the generator and dis-
criminator compete against each other with the opposite
objectives in the training process. Through the adversarial
training, the Nash equilibrium can be achieved, such that the
generator and discriminator cannot improve their objectives
by changing only their own network. Moreover, the last term
in (5) is the gradient penalty to enforce Lipschitz constraint
such that the gradient of the GAN network is upper-bounded
by a maximum value. This term is essential to mitigate the
gradient vanishing or exploding problem in the training of
GAN network. Specifically, the symbol �̃� is the sampled point
along the straight lines between the paired points of 𝒙 and
𝐺 (𝒛), and the parameter _ is the penalty coefficient.

2.3 Proposed T-GAN
The framework for the proposed T-GAN is depicted in Fig. 2,
in which the transfer learning is conducted to transfer the
knowledge from the source domain to the target domain.
The source domain is defined on the PDPs with large size
simulated by 3GPP model [1], while the target domain is
based on the measured PDPs of small size. Moreover, the
symbols Xs and Xt denotes the feature spaces of source do-
main and target domain, respectively. The two feature spaces
are closely related, since the 3GPP model are implemented
with the extracted statics from measurement including delay
spread, angular spread and so on. Therefore, there exists
shared knowledge between the two domains, which can be
transferred.

In both of the source domain and the target domain, a task
is defined to capture the distribution of the PDPs. Moreover,
the symbols 𝑓𝑠 and 𝑓𝑡 denote the predictive functions of the
two domains to fulfil the task, which can be learned by the
proposed GAN network through the training process. The
GAN network can be well trained in the source domain,
with a large number of simulated PDPs. However, the size of
measured PDPs is quite small for the training of GAN in the
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Figure 3: Measurement layout in the indoor corridor
scenario [5].

target domain, which can cause the difficulty of converging
or the over-fitting problem. Then, the solution is to transfer
the knowledge learned in the pre-trained GAN network in
the source domain to the target domain, which yields the
T-GAN network.

The method of fine-tuning [9] is adopted for the transfer
learning process. The T-GAN is initialized with the weights
of the GAN pre-trained on the simulated PDPs, and is then
fine-tuned on the measured PDPs. It is worth noting that
the generator and discriminator in the GAN are both trans-
ferred, which can yield the better performance in generating
high quality samples and fast convergence, compared with
transferring only the generator or the discriminator [9].
With transfer learning, the performance of T-GAN can

be largely enhanced. Specifically, the channel statistics ex-
tracted for 3GPP method are captured by the proposed GAN
trained on simulated PDPs, which are further transferred to
T-GAN. Moreover, T-GAN can learn the features of PDPs
that are not characterized by 3GPP method, directly from
measurement, which further improves the performance of
T-GAN in modeling the distribution of PDPs.

3 EXPERIMENT AND PERFORMANCE
EVALUATION

In this section, the experiment settings are elaborated. More-
over, the performance of the T-GAN are evaluated by compar-
ing the generated distribution of PDPs with measurement.

3.1 Dataset and Setup
The dataset is collected from the measurement campaign
in [5]. which is conducted in an indoor corridor scenario
at 306-321 GHz with 400 ns maximum delay, as depicted in
Fig. 3. With the measurement data, the PDPs can be extracted
to characterize the channel in the 21 receiver points. Since
the sample frequency interval is relatively small, as 2.5 MHz,
the measured PDPs are very long, including 6001 sample
points, which results in extraordinary computation and time
consumption to train the GANs. To address this problem,
we only use the measured channel transfer functions in the
frequency band from 314 to 315 GHz, based on which the
PDPs can be shorten to 401 sample points.
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Figure 4: Loss of the generator and discriminator in
the GAN network.

The PDPs of the 21 measured channels make up the mea-
sured dataset. In addition to themeasured dataset, the dataset
of simulated PDPs can be generated by 3GPP model with the
extracted statistics from the measurement, which consists of
10000 channels. Compared to the measured dataset, the sim-
ulated dataset has larger data size with the channel statistics
embedded. Moreover, the PDPs in two datasets are normal-
ized into the range of [0, 1] by the min-max normalization
method.

The training procedure of the GAN network is explained
in detail as follows. Firstly, the input noise vector 𝑧 of size 100
is generated by the multivariate normal distribution, which
can provide the capabilities to transform into the desired
distribution. The gradient penalty parameter _ in (5) is set as
10, which works well in the training process. Moreover, the
stochastic gradient descent (SGD) optimizer is applied for
the generator network, and the adaptive moment estimation
(Adam) optimizer is chosen for the discriminator network.
In addition, the learning rates of the two optimizers are both
set as 0.0002 to stabilize the training.
All the experimental results are implemented on a PC

with AMD Ryzen Threadripper 3990X @ 2.19 GHz and four
Nvidia GeForce RTX 3090 Ti GPUs. In addition, the training
of GAN network is carried out in the Pytorch framework.

3.2 Convergence
The proposed GAN is first trained on the simulated dataset,
and is then fine-tuned on the measured dataset with transfer
learning to develop the T-GAN. The numbers of epochs for
training the proposed GAN and T-GAN are both set as 10000.
A epoch is defined as a complete training cycle through the
training dataset, in which the generator and discriminator
are iteratively trained for once. To demonstrate the benefits
of transfer learning, the GAN is also trained on the measured
dataset without transfer learning for comparison. The loss
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(b) Average PDP.

Figure 5: Plot of PDPs generated by measurement,
3GPP, the proposed GAN and T-GAN.

of generator denoted by G_loss and loss of discriminator de-
noted by D_loss are shown in the Fig. 4, in which the TG_loss
and TD_loss correspond to the losses for T-GAN. For the sim-
ulated dataset, it is clear that the generator and discriminator
reach the equilibrium in the end. For the measured dataset,
the loss of T-GAN is close to the loss for the simulated dataset
except for some small fluctuations. The fluctuations are due
to the small size of the measured dataset. By comparison, the
training is not stable for the GAN network without transfer
leaning. There is large fluctuation in the discriminator loss,
and the absolute values of G_loss and D_loss are quite large
compared to the losses for the simulated dataset. The com-
parison demonstrates the benefits of the transfer learning in
the training of GAN network, which enables T-GAN to con-
verge with a small training dataset. Moreover, it takes 4000
epochs for T-GAN to converge, compared to 6000 epochs for
GAN trained on the simulated dataset. From these results,
it is clear that the transfer learning technique can improve
the convergence rate of T-GAN, and reduce the training
overhead with the knowledge from the pre-trained model.
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Figure 6: SSIM of PDP for 3GPP, the proposed GAN and
T-GAN.
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Figure 7: Delay spread for 3GPP, the proposed GAN
and T-GAN.

3.3 Power Delay Profile
In the experiment, the samples of PDP from measurement,
3GPP method, the proposed GAN and T-GAN are compared
as in Fig. 5(a). It is clear that the PDPs are similar to each
other, which proves that the proposed GAN and T-GAN can
learn the features of PDPs. Moreover, it is observed that PDP
of measurement is more complex than PDP of 3GPP method.
There are more peaks and fluctuations in the temporal do-
main. This shows that 3GPP cannot well capture the channel
effects embedded in PDP. Comparing PDPs generated by the
proposed GAN and T-GAN, the PDP generated by T-GAN
is close to measurement, while the PDP generated by the
proposed GAN is similar to the 3GPP approach. This is rea-
sonable, since the T-GAN can capture the features of PDP
from measurement through transfer learning, while the pro-
pose GAN can only learn the features of the simulated PDPs
by 3GPP method.

In addition, the average PDPs for these method are plotted
in Fig. 5(b). It is clear that T-GAN shows good agreementwith
measurement, while 3GPP and GAN have large deviations
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from measurement. The deviations can be measured by root-
mean-square error (RMSE), calculated as

RMSE =

√︂
1
𝑁𝜏

∑︁
(𝑃𝑚 (𝑖Δ𝜏) − 𝑃𝑔 (𝑖Δ𝜏))2, (6)

where 𝑁𝜏 denotes the number of sampling points in PDP, 𝑖
indexs temporal sample points of PDPs, 𝑁𝜏 represents the
number of sampling points and Δ𝜏 is the sampling interval.
Moreover, 𝑃𝑚 (𝑖Δ𝜏) and 𝑃𝑔 (𝑖Δ𝜏) are the average power in the
𝑖th sample point of measured PDPs and generated PDPs, re-
spectively. The results of RMSE for 3GPP, the proposed GAN
and T-GAN are 4.29 dB, 4.12 dB and -4.82 dB, respectively.
The T-GAN improves the performance of RMSE by about
9 dB, compared with other methods, which demonstrates
that the T-GAN outperforms the other methods in terms of
modeling the average power of PDP. This is attributed to
the powerful capability of GAN in modeling the complex
distribution, and the benefits of transfer learning in better
utilizing the small measurement dataset.

Moreover, to measure the similarity quantitatively, Struc-
ture Similarity Index Measure (SSIM) is introduced, which
is widely applied to evaluate the quality and similarity of
images. The range of SSIM is from 0 to 1, and the value of
SSIM is larger when the similarity between images is higher.
The PDPs generated by 3GPP method, the proposed GAN
and T-GAN are compared with measurement. The cumula-
tive probability functions (CDFs) of SSIM for these method
are shown in Fig. 6. It can be observed that the proposed
T-GAN can achieve higher SSIM values compared with other
methods. More than 40% of SSIM values are higher than 0.6
for T-GAN, compared to only 20% for 3GPP and the proposed
GAN. This further demonstrates the better performance of
T-GAN in modeling the PDPs.

3.4 Delay Spread
Delay spread characterizes the power dispersion of multi-
path components in the temporal domain, which can be
calculated as the second central moment of PDPs, by

𝜏 =

∑𝑁𝜏

𝑖=0 𝑖Δ𝜏𝑃 (𝑖Δ𝜏)Δ𝜏∑𝑁𝜏

𝑖=0 𝑃 (𝑖Δ𝜏)Δ𝜏
,

𝜏𝑟𝑚𝑠 =

√√∑𝑁𝜏

𝑖=0 (𝑖Δ𝜏 − 𝜏)2𝑃 (𝑖Δ𝜏)Δ𝜏∑𝑁𝜏

𝑖=0 𝑃 (𝑖Δ𝜏)Δ𝜏
,

(7)

where 𝜏 denotes the mean delay weighted by the power,
𝜏𝑟𝑚𝑠 refers to the root-mean-square (RMS) delay spread, and
𝑃 (𝑖Δ𝜏) are the power in the 𝑖th sample point of PDPs.

Then, the CDF plot of delay spread formeasurement, 3GPP,
the proposed GAN and T-GAN is depicted in Fig. 7. It can
be observed that the CDFs of delay spread for 3GPP, the
proposed GAN and T-GAN match the measurement well.

4 CONCLUSION
In this paper, we proposed a T-GAN based THz temporal
channel modeling method, which can capture the distribu-
tion of PDPs for the THz channel. Moreover, the transfer
learning is exploited in T-GAN to reduce the size require-
ment of training dataset and enhance the performance of
T-GAN, through transferring the knowledge stored in the
pre-trained GAN on the simulated dataset by 3GPP method
to the target T-GAN trained on limited measurement. Finally,
we validate the performance of T-GAN with measurement.
T-GAN can generate the PDPs that have good agreement
with measurement. Compared with conventional methods,
T-GAN has better performance in modeling the distribution
of PDPs, with 9 dB improved RMSE and higher SSIM. More
than 40% of SSIM values are higher than 0.6 for T-GAN,
compared with only 20% for 3GPP and the proposed GAN.
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