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Abstract
In the rapidly evolving field of wireless communication, Multiple
Input Multiple Output (MIMO) networks have emerged as a pivotal
technology, offering enhanced data rates and spectral efficiency by
leveraging multiple antennas at both the transmitter and receiver.
The introduction of Open Radio Access Network (O-RAN) archi-
tecture has further revolutionized this domain, enabling greater
flexibility, scalability, and interoperability through its open inter-
faces and software-defined approach. This paper presents DRAGON,
a novel Deep Reinforcement Learning (DRL)-based framework for
joint Layer and Modulation and Coding Scheme (MCS) selection,
tailored for downlink single-user MIMO networks under the O-
RAN framework. Our approach is designed to be highly scalable,
capable of efficiently managing a large number of configuration
options in one-shot prediction, including up to 25 MCS and 4 layer
choices. The proposed solution has been rigorously evaluated using
an O-RAN-based simulation environment, demonstrating up to an
18% performance improvement over the state-of-the-art (SOTA)
methods and achieving a best throughput of 87.4% when compared
to the collected ground-truth dataset. Furthermore, our method
supports real-time prediction, making it viable for practical deploy-
ment. In addition to these advancements, we explore the potential
integration of our DRL-based solution with real-world platforms
and discuss the extension of our approach to handle multi-user
(MU) MIMO scenarios, paving the way for broader applications in
next-generation wireless networks.
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1 Introduction
The increasing demand for higher data rates and improved spec-
tral efficiency in wireless communication systems has driven the
adoption of advanced technologies such as Multiple-Input Multiple-
Output (MIMO). MIMO systems, by utilizing multiple antennas at
both the transmitter and receiver, significantly enhance the capac-
ity and reliability of wireless networks. The ability of MIMO to
exploit spatial diversity and multiplexing gain has made it a cor-
nerstone in modern communication standards, including 5G and
beyond. In parallel, the Open Radio Access Network (Open RAN)
initiative has emerged as a promising approach to revolutionize the
traditional Radio Access Network (RAN) architecture. Open RAN
promotes the disaggregation of RAN functions, enabling interoper-
ability, flexibility, and innovation by utilizing open interfaces and
standardized software-defined components. This paradigm shift
not only reduces costs but also accelerates the deployment of new
features and services in wireless networks. Within theMIMO frame-
work, the selection of modulation and coding schemes (MCS) and
the determination of the number of transmission layers are criti-
cal for optimizing network performance. The MCS determines the
trade-off between data rate and robustness against channel impair-
ments, while the layer selection in MIMO dictates the number of
parallel data streams transmitted, influencing both throughput and
reliability. The challenge lies in the dynamic nature of wireless
channels, where factors such as interference, mobility, and envi-
ronmental conditions fluctuate rapidly. Adaptive MCS and layer
selection strategies are essential to address these challenges. By
dynamically adjusting the MCS and the number of layers in re-
sponse to real-time channel conditions, adaptive techniques can
maximize spectral efficiency and ensure robust communication. In
MIMO systems, where the complexity of channel interactions is
high, adaptive strategies are particularly valuable as they enable
the network to exploit the full potential of the available spatial
resources.

Heuristic-based layer number and MCS selection techniques [7,
23] rely on Channel Quality Indicator (CQI) and Rank Indicator (RI)
feedback from the UE to the base station. The base station uses a
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look-up table to map CQI to MCS and RI to layer number, adapting
to channel variations, with some methods incorporating HARQ
for finer adjustments. A recent proposal [21] introduced a novel
SNR-CQI-MCS mapping table, showing effectiveness in various 5G
multi-user scenarios. However, these table-based methods often
struggle with limited adaptability to diverse channel conditions.
Machine learning (ML) offers a more adaptive approach in wireless
communication [2, 3, 5, 6, 11], including MCS and layer selection.
Techniques utilizing CQI-RI feedback (CSI-reporting) as inputs for
ML models, such as supervised learning (SL)[2, 5, 6] and reinforce-
ment learning (RL)[3, 11], efficiently map channel conditions to
MCS-layer choices. An RL-based adaptive CQI and RI estimation
for 5G NR [3] introduces an online adaptation algorithm to meet
target block error rates (BLER). However, CSI-reporting techniques
often suffer from long periodicity and coarse granularity, leading
to performance degradation. Recently, a CNN-LSTM-based adap-
tive modulation and coding (AMC) technique for massive MIMO
networks [2] was introduced, utilizing uplink channel matrix to
predict MCS in MIMO transmissions by extracting spatial and se-
quential information through CNN and LSTMmodels. Nevertheless,
using SRS-estimated uplink channel information to predict down-
link MCS is unreliable for cell-edge users due to limited power and
poor SRS reception. Additionally, like many ML-based layer and
MCS prediction methods, this approach focuses on a simplified task
with a limited number of prediction choices (e.g., 11 MCS indices).
Its effectiveness in scenarios involving both layer number and MCS
indices selection remains to be evaluated. In response, we propose
DRAGON, a DRL-based joint layer number and MCS adapter for
5G MIMO networks within the O-RAN framework. By utilizing
SRS-estimated uplink channel matrices and CQI as auxiliary inputs,
DRAGON enhances reliability, even for cell-edge users. The ac-
tion branching architecture enables the DRL model to manage the
high-dimensional joint layer-MCS prediction task. As O-RAN con-
tinues to grow, there is also extensive literature on radio resource
allocation and management within this framework [8, 10].

The main contributions of the paper are as follows:
• We propose DRAGON, a real-time DRL-based mechanism
for joint layer number and MCS prediction.

• The action branching architecture is employed within the
Deep Double Q-Network (D3QN) model, enabling it to ef-
ficiently manage the high-dimensional task of layer-MCS
prediction.

• We conduct an exhaustive evaluation of DRAGON using a
realistic dataset, and we compare its performance against
state-of-the-art approaches to demonstrate its effectiveness.
Furthermore, DRAGON is integrated with a real-world O-
RAN-based MIMO platform to validate its practical applica-
bility.

2 Methodology
2.1 Overview of DRAGON
In the conventional framework, UEs utilize the Channel State Infor-
mation Reference Signal (CSI-RS) to measure CSI feedback, includ-
ing Channel Quality Indicator (CQI), Precoding Matrix Indicator
(PMI), and Rank Indicator (RI). This feedback is then transmitted
to the base station via an uplink control/data channel. The base

Figure 1: DRAGON framework.

station subsequently maps the received CQI values to specific MCS
levels by referencing a predefined lookup table [21]. Additionally,
the RI is used to determine the number of independent data streams
or layers that can be reliably transmitted and received between the
UE and the base station. To improve the accuracy of this mapping,
certain approaches also incorporate Hybrid Automatic Repeat Re-
quest (HARQ) information (i.e., ACK/NACK) from previous time
slots. This inclusion is particularly significant in mobile scenarios,
where the sequential dependency of channel conditions plays a
critical role in adaptive MCS and layer selection.

Nevertheless, as indicated in prior studies, CSI reporting typi-
cally incurs a delay of up to 9.5 ms and occurs every 8 time slots [1].
In some real-world implementations, CSI reporting may be further
delayed, occurring only once every 20 ms. In scenarios where strin-
gent time constraints are present, such feedback-based approaches
may struggle to adjust the MCS levels and the number of transmis-
sion layers in a timely manner, potentially leading to a degradation
in system performance. Moreover, CQI generally quantizes channel
quality into 16 levels using 4 bits, resulting in a coarse granularity
that complicates precise MCS selection at the base station. Addi-
tionally, table-based MCS selection methods may prove ineffective
across varying communication scenarios. Therefore, the traditional
CQI- and RI-based mechanisms for layer and MCS selection have
significant room for improvement.

In contrast, DRAGON utilizes the uplink channel matrix, esti-
mated through channel measurements using the Sounding Refer-
ence Signal (SRS), along with the SNR measured periodically by the
CQI, to predict downlink layer and MCS selection based on reci-
procity in TDDmode. In this approach, the channel matrix provides
a more granular and timely response compared to the traditional
CQI-RI pair, making it a more effective basis for layer and MCS
prediction. The CQI-based SNR serves as an auxiliary factor, miti-
gating potential inaccuracies in SRS-based SNR due to power limi-
tations on the UE side, particularly for UEs located at the cell edge.
Additionally, ACK/NACK feedback from the previous TTI is incor-
porated to further refine predictions, with throughput serving as
the performance metric for evaluation. An illustration of DRAGON
is provided in Fig. 1. As illustrated, this problem falls within the
domain of discrete-action reinforcement learning, where a Markov
Decision Process can be used to model the decision-making process.
Discrete-action algorithms have been instrumental in many recent
advancements in deep reinforcement learning [12, 22, 24]. How-
ever, applying these algorithms to high-dimensional action tasks
presents challenges, as the combinatorial increase in the number
of possible actions with each additional action dimension leads to
difficulties in convergence—a phenomenon known as the "curse
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Figure 2: DRAGON in O-RAN framework.

of dimensionality" or "action dimensional disaster" [4]. Given that
joint prediction of layer and MCS is a high-dimensional combinato-
rial problem with hundreds of potential choices, conventional RL
algorithms are not well-suited for direct application. To address this
challenge, DRAGON adopts an action branching architecture [20]
that features a shared decision module followed by multiple net-
work branches, each corresponding to a different action dimension.
This architecture enables a linear increase in the number of outputs
relative to the number of degrees of freedom, allowing a degree of
independence for each action dimension and effectively managing
the complexity of the problem.

In O-RAN framework, the key elements include the Radio Unit
(RU), Distributed Unit (DU), Centralized Unit (CU), and the RAN
Intelligent Controller (RIC). The RU is the front-end of the Open
RAN architecture, responsible for the transmission and reception
of radio signals over the air interface. The DU handles the real-time
and lower-layer tasks, including scheduling (e.g. UE scheduling
and layer and MCS selection), HARQ (Hybrid Automatic Repeat
Request), and beamforming [15]. Positioned closer to the edge of
the network, the DU is crucial for maintaining low-latency commu-
nication, making it a vital element in scenarios requiring real-time
responsiveness. The CU is responsible for higher-layer protocol
processing, such as non-real-time functions and control plane man-
agement. Finally, the RAN Intelligent Controller (RIC) adds an
additional layer of intelligence to the Open RAN architecture by
providing a platform for deploying advanced control and optimiza-
tion algorithms. DRAGON naturally resides in the DU performing
layer and MCS selection like shown in Fig. 2. Because DRAGON
leverages a single DRL model to perform one-shot predictions of
both the optimal MIMO layer configuration and the appropriate
MCS, enabling real-time adaptation to fluctuating channel condi-
tions. This capability is particularly advantageous for deployment
in the DU, as it allows DRAGON to seamlessly integrate with ex-
isting DU operations without disrupting the functionality of other
O-RAN components.

2.2 Action Branching Architecture
As highlighted in §2.1, joint layer and MCS selection is a high-
dimensional combinatorial optimization problem, making it chal-
lenging for standard discrete-action DRL models to manage due
to the curse of dimensionality. The action branching architecture

mitigates this issue by splitting the large action space into multiple
branches, while retaining a shared decision-making module to re-
duce the action space size in each branch. Additionally, we employ
Dueling Double Deep Q-Network (D3QN) as the foundational algo-
rithm due to its simplicity and effectiveness as a powerful off-policy
approach [20].

D3QN. The Deep Q-Network (DQN)[12] represents a fundamen-
tal RL model that integrates Q-learning with deep neural networks
to approximate the action-value function, enabling agents to make
informed decisions based on state spaces. However, both tabular
Q-learning and DQN have been shown to suffer from overestima-
tion of action values[22]. This overestimation arises from the fact
that the same network is utilized for both action selection and
evaluation, leading to overoptimism in the Q-value estimations. To
mitigate this issue, [22] introduced the Double DQN (DDQN) algo-
rithm, which employs the policy network for action selection while
using the target network for evaluation. Furthermore, the dueling
network architecture [24] explicitly separates the representation of
state values and state-dependent action advantages into two dis-
tinct branches, while sharing a common feature-learning module.
These branches are subsequently combined through a specialized
aggregation layer to produce an estimate of the action-value func-
tion. The dueling network architecture has been shown to enhance
policy evaluation, particularly in scenarios involving many similar-
valued or redundant actions, thereby enabling faster generalization
across large action spaces.

Prioritized Experience Replay Buffer (PERB).The experi-
ence replay mechanism allows off-policy reinforcement learning
agents to reuse past experiences or demonstrations, thereby en-
hancing learning efficiency [12]. In the standard DQN algorithm, ex-
perience transitions are uniformly sampled from a replay buffer. To
further optimize learning, a framework for prioritizing experience
was proposed by [19] to replay important transitions—those with
a high expected learning progress—more frequently. In our work,
we incorporate PERB to enhance neural network performance. We
specifically assign higher weights to experience transitions that
exhibit higher loss during the learning process and store them in
the replay buffer with <state, action, reward, next state> tuples. As a
result, these transitions are more likely to be sampled in subsequent
iterations.

Action Branching D3QN. Fig. 3 illustrates the architecture of
the Action Branching D3QN, which distributes the representation
of the value function or policy across multiple network branches
while maintaining a shared decision module that encodes a latent
representation of the common input state. When a state is input, the
shared decision module computes a latent representation, which is
subsequently used for evaluating the state value and the factorized
state-dependent action advantages in the independent branches.
These outputs are then combined via a specialized aggregation layer
to produce the Q-values for each action dimension. The factorizedQ-
values are subsequently queried to generate a joint-action tuple. In
the DRAGON model, the input representation is distributed across
three branches—one dedicated to layer prediction and two for MCS
prediction—reflecting the greater number of potential choices in
MCS selection compared to layer selection.
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Figure 3: Network architecture of DRAGON. (The number of
units of each layer is indicated)

2.3 Markov Decision Process (MDP) Modeling
We adapt the Action Branching D3QN to formulate and construct a
MDP model specifically designed to predict the layer number and
MCS in downlink single-user MIMO networks.

State space. We define 𝑠𝑡 := [𝐶𝑆𝑁𝑅
𝑡 , 𝐻𝐴𝑅𝑄𝑡−1] as the state

space at TTI 𝑡 , where 𝐶𝑆𝑁𝑅
𝑡 indicates flattened channel matrix at

TTI 𝑡 factorized by linear SNR and 𝐻𝐴𝑅𝑄𝑡−1 indicates the HARQ
at TTI 𝑡 − 1. Due to the inherent limitations of neural networks in
processing complex numbers, we concatenate the real and imagi-
nary components of the channel matrix entries. Since our focus is
on wideband MCS selection [1], we do not account for frequency-
selective fading and instead utilize an averaged channel matrix
across all subcarriers.

Action space. Due to DRAGON’s three action branches, the
output of the neural network is a vector containing three entries.
The first entry corresponds to layer number selection, while the
remaining two entries pertain to MCS prediction. To maintain a
consistent action bin size across all branches [20], the number of
action bins is set to five, with each vector entry being an integer
ranging from 0 to 4. Consequently, DRAGON supports the selection
of up to four layer numbers (with the fifth bin reserved as a dummy)
and 25 MCS levels, effectively covering nearly all options specified
in the 5G standard [1]. We define the action space at TTI 𝑡 as
𝑎𝑡 := [𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡 ]. Layer selection at TTI 𝑡 : 𝑙𝑡 = 𝛼𝑡 if 𝛼𝑡 < 4 else 𝛼𝑡−1
and MCS selection at TTI 𝑡 :𝑚𝑐𝑠𝑡 = 𝛽𝑡 × 5 + 𝛾𝑡 .

Reward. Our primary objective in layer and MCS selection is
to maximize system throughput. To achieve this, we employ the
throughput achieved by a single user as the reward. Specifically, if
a NACK is received, retransmission occurs in the subsequent TTI,
resulting in a throughput of zero at the current moment.

3 Performance Evaluation
In this section, we evaluate DRAGON through a comprehensive
assessment. To obtain ground truth data, we perform an exhaustive
search over all possible configuration combinations, generating a
dataset using theMatlab 5G toolbox [9]. This dataset is subsequently
used to train our DRL model and optimal solution can be acquired
from it to serve as an upper bound during performance evaluation.
Additionally, we implement a heuristic-based approach and a ML-
based SOTA method as baselines for comparison with DRAGON.
This evaluation underscores our model’s efficacy in selecting the
optimal MCS and layer configuration.

Figure 4: Dataset collection flow.

3.1 Experiment Setup
To generate the dataset, we configured the MATLAB 5G NR Physi-
cal Data Shared Channel (PDSCH) Throughput library to simulate
a single-cell, 32 (base station antennas) × 4 (UE antennas) single-
user MIMO channel. The simulation was set with a 3.5 GHz carrier
frequency, 20 MHz bandwidth, and 30 kHz subcarrier spacing, re-
sulting in a total of 51 physical resource blocks (PRBs). To emulate
future deployment scenarios, we generated channels under the
clustered delay line (CDL)-C model, representative of an Urban
Macro Non-Line-of-Sight (NLoS) environment. We also modeled
a mobile UE with pedestrian speed, introducing varying channel
conditions across different frames. Furthermore, the number of lay-
ers and MCS were configurable within the library, with HARQ and
retransmission processes enabled. In total, we generated channel
matrices for 30K transmission frames for training and testing. We
employed MCS Table 2 for PDSCH from 3GPP TS 38.214 [1], encom-
passing modulation schemes such as 4-QAM, 16-QAM, 64-QAM,
and 256-QAM, with LDPC code rates ranging from 0.11 to 0.92. Our
study focused on MCS indices 1 to 25, aligning with the two MCS
branches detailed in §2.2. MCS 0, 26, and 27 were excluded from our
model due to their infrequent selection in real-world applications,
attributable to their intolerable bit error rates or inadequate spectral
efficiency. System throughput was adopted as the performance met-
ric, with datasets collected for per-frame throughput corresponding
to eachMCS-layer combination. Specifically, we conducted multiple
evaluation rounds per channel, testing all available MCS indices
and layer numbers under varying SNRs. The optimal MCS and layer
for a given channel scenario and SNR were defined as those achiev-
ing the highest throughput. Fig. 4 illustrates the dataset collection
process, which includes five nested loops: channel realization, layer
selection, MCS selection, SNR setting, and throughput collection.
This exhaustive search over all MCS-layer combinations allowed us
to determine the throughput of any selection under specific channel
conditions and SNR, providing comprehensive guidance for DRL
model training and establishing a performance upper bound during
evaluation.

The dataset is divided into training and test sets with an 8:2
ratio for training the ML model presented in §2.2. Model training
is conducted on an NVIDIA Tesla T4 server [13]. As depicted in
Fig.3, the architecture consists of 7 hidden layers in the shared
representation module, 3 hidden layers for each of the 3 branches,
and one for the state value. ReLU is employed as the activation
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Table 1: Experiment Setting and Training Hyper-parameters

Parameter Value
System Carrier Frequency 3.5 GHz

System Bandwidth 20 MHz
Frame Duration 1 ms
Channel Model CDL-C
MCS Table 38.214 - Table 5.1.3.1 [1]

Number of BS Antennas 32
Number of UE Antennas 4

Batch Size 128
Learning Rate 1e-4
Optimizer SGD
Episodes 700

function following each hidden layer. The model is trained using
the SGD optimizer [18] in PyTorch [14]. A summary of the relevant
simulation parameters is provided in Table 1.

3.2 Benchmarks
To rigorously assess the performance of DRAGON, we compare it
against a SOTACNN-based approach [2] and a heuristic table-based
method, which serve as baselines. Additionally, the performance
upper bound is derived directly from the collected dataset.

CNN-based Method: Convolutional Neural Networks (CNNs)
are widely utilized in classification problems due to their ability
to automatically learn complicated feature representations from
raw data, making them particularly effective in tasks involving im-
age and signal processing. A state-of-the-art approach has applied
a CNN-LSTM architecture for MCS selection, demonstrating sig-
nificant performance improvements. Using the open-source code
provided by the authors [17], we extend the model to include both
layer number selection and MCS selection, where the best layer
and MCS indices are used as labels for training. To maintain the
integrity of the original approach, we preserve the neural network
size as specified in the reference work.

Table-based Method: The table-based method is a traditional
technique employed in the 5G standard, yet its performance is no-
tably influenced by factors such as 5G numerology, the number of
user spatial streams, propagation conditions, and traffic character-
istics. In [21], a novel SNR-CQI-MCS mapping table is introduced
and evaluated in the context of 5G multi-user scenarios that in-
clude audio, video, and gaming traffic patterns, demonstrating a
performance improvement of approximately 35% compared to state-
of-the-art mapping tables. To make it comparable with DRAGON,
we incorporated RI-based layer selection into the method.

D3QN-based Method: This benchmark was conducted as an
ablation study in which we removed the action branching from
proposed design, relying solely on the D3QN model. As outlined
in §2.1, the action branching architecture is central to our design,
enabling the discrete-action DRL model to effectively manage the
challenges posed by high-dimensional action spaces. Disabling the
action branching compromises model performance in the layer-
MCS prediction task with high-dimensional action requirements.

(a) (b)

Figure 5: (a) Reward progression during training and (b) Per-
formance Comparison between DRAGON and benchmarks.

OptimalMethod: The last benchmark we designed is to achieve
an optimal solution by performing an exhaustive search over all pos-
sible MCS-layer combinations during the dataset collection phase.
By thoroughly exploring the entire solution space, the method
ensures that the most effective MCS-layer pair is identified for
each channel condition, thereby guaranteeing optimal performance.
When applied during evaluation, this method provides a reliable
performance upper bound, offering a reference point against which
other approaches can be compared.

3.3 Experiment Results
3.3.1 Model Training and Convergence. We constructed a compre-
hensive dataset comprising 30,000 frames, partitioned into 24,000
samples for training and 6,000 for testing. The DRAGONmodel was
trained for 700 epochs, with 24,000 iterations per epoch. Conver-
gence of the DRL model typically occurred around the 400th epoch
shown in Fig. 5a. Throughout training, we employed the epsilon-
greedy algorithm to balance exploration and exploitation by either
selecting random actions or using learned actions that maximize
reward. Epsilon, which represents the probability of choosing ran-
dom actions, was initially set to 1 and gradually decreased to zero
over 200 epochs.

3.3.2 Performance Results. We evaluate DRAGON’s performance
on a test dataset in comparison to other benchmark models. For
CNN-based and D3QN-based approaches, we utilize the test dataset
for inference and derive the corresponding throughput based on
the predicted layer and MCS indices. In the table-based method,
we map the recorded CQI to MCS indices and the RI to the layer
number to estimate throughput. The comparison results of normal-
ized throughput are presented in Fig. 5b. DRAGON achieves 87.4%
of the best throughput, outperforming other benchmarks due to
its ability to effectively manage high-dimensional combinatorial
challenges, thanks to the action branching architecture. While the
CNN-based method demonstrated near-optimal performance in[2],
it was limited to a simpler prediction task with 11 MCS indices.
However, as the classification task expands exponentially to in-
clude layer selection and all MCS indices, a significant performance
degradation is observed. Moreover, the table-based method shows
the poorest performance among the benchmarks, primarily due
to its limited adaptability to varying channel conditions. Quanti-
tatively, the action branching architecture delivers an impressive
15% throughput improvement over the pure D3QN model.
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4 Integration with O-RAN Framework
O-RAN is a modular and open architecture that consists of key
components such as the CU, DU, RU, and RIC to enable flexible,
software-defined control and optimization of network resources.
As illustrated in §2.1, the model is intended to reside in the DU of
O-RAN and interact with other essential modules such as the UE
scheduler and beamforming components. However, the real-world
O-RAN framework-based simulator is implemented in C++, while
our trained model is in PyTorch. To bridge this gap, we developed
an inference module in C++ and integrated it with the real-world O-
RAN-based simulator. Additionally, we employed TorchScript [16]
to convert the trained model into a C++-compatible format that
can be loaded by the simulator. After rigorous testing with the
same test dataset, consisting of approximately 6,000-frame channel
realizations, the integrated model demonstrated performance com-
parable to the results presented in §3. Notably, the model achieved
a one-shot prediction time of 0.85 ms for layer and MCS selection,
satisfying the stringent latency requirements of 5G systems, which
mandate a sub-1ms latency.

5 Discussion
The DRAGON framework, initially developed for single-user MIMO
networks within the O-RAN architecture, can be seamlessly ex-
tended to multi-user MIMO (MU-MIMO) scenarios, where inter-
user interference plays a crucial role. By replacing the raw channel
matrix with channel gain information and incorporating inter-user
correlations into the state space, DRAGON remains applicable with-
out modifying the action space or reward function. This extension
leverages DRAGON’s capacity to handle high-dimensional tasks,
ensuring adaptability tomore complex network scenarios, including
power allocation. This flexibility enhances DRAGON’s relevance
to practical 5G and beyond networks in the O-RAN framework.

6 Conclusion
In this paper, we introduce DRAGON, a DRL-based approach for
selecting the optimal layer number and MCS in single-user MIMO
networks within the O-RAN framework. Utilizing only the uplink
channel matrix, SNR, and HARQ feedback, our method predicts the
best downlink configuration. We collected a comprehensive dataset
through realistic simulations and validated our model on a real-
world O-RAN MIMO platform. Our results show that DRAGON
outperforms state-of-the-art ML and heuristic methods.
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