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ABSTRACT
The fundamental bottleneck in adapting data-driven wireless
solutions to real world is the lack of tools for augmenting
good quality data which is environment-specific. Indeed,
much of the data required for popular data-driven wireless
communication and sensing systems requires domain exper-
tise beyond the reach of an average consumer. This demo
presents a radical new vision for generating synthetic data
in consumer-specific environments by leveraging the power
of modern compute.

This demo presents a vision for consumer-facing wireless
tools that can augment synthetic data for development and
adaptation of data-driven wireless systems. Our solution
leverages existing ray-tracing based wireless simulators in
a new way to map and visualize the coverage in three key
use-cases for this technology. Further, we motivate the need
for development of such tools for generating synthetic data
is vital towards a broader vision of foundational wireless
models for data-driven wireless communication and sensing
systems.
ACM Reference Format:
Qiancheng Li, Xinghua Sun, and Akshay Gadre. 2024. Demo :
Synthetic Data for Data-Driven Wireless. In The 30th Annual In-
ternational Conference on Mobile Computing and Networking (ACM
MobiCom ’24), November 18–22, 2024, Washington D.C., DC, USA.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3636534.
3701545

1 INTRODUCTION
Wireless communication is integrated deeply in our every-
day life with devices becoming increasingly mobile. The
sheer diversity of wireless technologies we use range from
local (e.g. home WiFi, NFC payments, and RFID cards) to
long distance (e.g. cellular, mmWave FR2 5G, satellite SOS).
This deep penetration and usage of wireless technologies by
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average consumers makes them ideal for data-driven opti-
mizations in consumer-specific scenarios. While there have
been significant advances in developing data-driven wireless
communication (e.g. beamforming [14, 18], decoding [12],
channel estimation [13]) and sensing (e.g. location track-
ing [7, 15], radar imaging [8]) systems, these benefits have
remained out of reach for the average consumer. The pri-
mary bottleneck in adoption of these solutions in real-world
deployments is their generalizability. The heterogeneous na-
ture of devices deployed as well as the varying impact of
the different physical environments on wireless propagation
makes it almost impossible to develop a one-shot data-driven
wireless solution.

This paper and accompanying demonstration presents the
first steps towards augmenting synthetic data in unknown
environments by developing accessible visualizations in XR.
The demo presents a general purpose pipeline for generat-
ing synthetic data in unknown environments by combining
existing solutions for capturing environment, performing
ray tracing and generating technology specific metrics. Our
broader vision for the developed tool is to highlight this im-
portant problem of augmenting synthetic data for wireless
solutions and present a pipeline for researchers and industry-
alike to bring further transparency to services provided and
new technologies developed and deployed. Further, we en-
vision such consumer-facing applications to be source of
invaluable diverse wireless data necessary to develop future
wireless foundational models.

2 RELATEDWORK
There has been some work on developing visualization tools
for wireless technologies by either listening to wireless sig-
nals [6, 9] or using active tags in the environment to visualize
signals [17]. Further, there has been much work on develop-
ing ray-tracing models [3, 4] that can model wireless propa-
gation given a rough structure of the environment. There is
also a significant work happening in further improving such
models by modeling various effects [10, 11, 19]. Further, a
significant number of data-driven wireless communication
(e.g. beamforming [14, 18], decoding [12], channel estima-
tion [13]) and sensing (e.g. location tracking [7, 15], radar
imaging [8]) systems have been developed. Unfortunately,
much of the above work requires domain expertise or re-
quires understanding of wireless technologies to visualize
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and generate synthetic data in an unknown environment. In
contrast, our work allows users to create their customized in-
door environment and visualizeWiFi propagation in 3D with
very high resolution. We leverage existing on-phone LIDARs
for capturing indoor environment and free public environ-
ment models available in Open Street Maps[5] for outdoor
environments. We then leverage Sionna-based ray-tracing
for generating synthetic data in the chosen environment for
a given technology. We further demonstrate the value of
generated data for three real-world applications. Finally, our
tool allows users to visualize the 3D signal power via XR
which makes it easier to explore.

3 XR VISUALIZATION DEMONSTRATION
Wewill present 3 practical real-world scenarios that have the
potential to significantly improve consumer awareness of
popular wireless technologies in the real world: (1) coverage
of indoor WiFi produced by router placed at various loca-
tions; (2) impact of building materials on wireless coverage;
and (3) visualizing outdoor coverage across cell towers on a
real world campus.

We make our visualizations intuitive to consumers focus-
ing on throughput at a given location by colors. Specifically,
we will visualize relative signal strength at different locations
through color differences – a brighter color indicates a better
throughput, and vice versa. Therefore, color like green and
yellow signifies a location with good signal coverage, while
a location colored by blue and purple will have worse cover-
age for a wireless technology operating at a given frequency
communicating with a known ground station.

3.1 Demo 1 – Large-scale Indoor
Propagation

In the first scenario, we take an accurate 3D model provided
to us for a building from a detailed CAD files generated
during construction of the building. In this well-designed
scenario, we generate the signal propagation throughout
the building for a given WiFi base station. Specifically, we
demonstrate the variation of signal power in the XR tool
which could assist the deployment of WiFi base station mesh.
We leverage the information about the materials of objects
such as walls, pipes and other reflectors in the environment
to simulate the wireless environment more accurately. We
further demonstrate how this generated synthetic data can
be leveraged to develop and adapt data-driven algorithms to
the environment.

3.2 Demo 2 – Indoor WiFi Coverage
The second demo scenario visualizes indoorWiFi coverage in
a lab setting. An end consumer typically deploys their WiFi
base station in their home in the location closest to the wire

Figure 1: Our demo will augment synthetic wireless
data for demonstrating three applications in XR : (1)
Indoor Coverage (2) WiFi Deployment Usecase (3) Cell
Tower Deployment

(copper/optical fiber) coming out of the wall. The primary
reason behind this colloquial choice being the lack of accessi-
ble tools to ascertain a good location for maximum coverage
inside their home. This necessitates deployment of additional
relays or range extenders to provide WiFi coverage to the
whole house. Further, many next-gen home WiFi solutions
leverage 5G backhaul to provide reliable coverage indoors
enabling free-form deployment of WiFi ground station.
We present one such proof-of-concept deployment in a

lab setting with multiple obstacles. First, we leverage off-
the-shelf iOS applications [1, 2] to capture the laboratory
environment using an commodity iPhone 15 Pro Max. As
one can imagine, the generated data from such low-quality
LIDAR is much worse than the one seen in Demo Scenario
1. Second, we leverage the Sionna ray-tracing model [4] for
generating synthetic data in the lab environment. We also
demonstrate the coverage generated from this low-res envi-
ronment model remain reasonably close to the true values.

In the demo, we show how various options of WiFi deploy-
ment in a lab setting indoors can affect the wireless coverage
across the locations in the lab at various different heights.
Further, the lab has multiple standing desks which means
that the WiFi deployment will have to be cognizant of the 3D
topology of the environment. We thus can leverage this visu-
alized data to identify poor coverage at some students’ desks
at optimize the location of WiFi base station to maximize it.

3.3 Demo 3 – Outdoor Cellular Deployment
The third component of our demonstration represents an
outdoor scenario where our goal is generate synthetic data
for wireless coverage provided by cell-towers in an outdoor
environment and provide cellular providers to optimize de-
ployment of next-generation cellular deployments to max-
imize their quality-of-service (QoS) metrics for consumers.
We first extract a rough estimate of outdoor environment
by extracting the building models of a campus from pub-
licly available open-source OpenStreetMaps Buildings [16]
dataset. We then manually label the building materials for
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improved estimation of wireless propagation in the environ-
ment. Finally, we leverage the Sionna [4] ray-tracing engine
to generate synthetic wireless coverage in the environment.

One expensive operational expense of deploying a cellular
base station is identifying good locations that maximize cov-
erage across locations. However, in complex urban and semi-
urban environments, the conventional cellular deployment
coverage models lack depth of information regarding the
quality of service provided and primarily focus on reducing
inter-cellular interference for spectrum license compliance.
This demo will enable modeling of such complex environ-
ments in real-time allowing telecommunication companies
to identify ideal deployment locations in advance. Our demo
shows how a network deployment engineer can visualize
the coverage provided across locations based on a given
cell tower location. This ability to generate synthetic data
in unknown environments at low-cost has the potential to
significantly reduce the operational expense of cell tower
deployment and yet maximize consumer satisfaction.

4 NEXT STEPS AND FUTURE VISION
There are several reasons why there exists no unified plat-
form for generating synthetic data that performs environ-
ment capture, ray-tracing and wireless metric generation:
(1) Each of the above components have been developed for
different use-cases that are quite distinct (3D capturing for ro-
botics, ray tracing for CGI lighting in movies and games, met-
ric estimation in wireless domain) and requires significant
engineering effort to plug together; (2) The pipeline is not
co-designed to maximize the quality of synthetic data gen-
erated; (3) The accuracy of the generated synthetic wireless
data is highly fickle due to heavy configuration requirements
and requires domain expertise. We encourage researchers
in the field to continue exploring new opportunities in this
important domain.

We strongly believe that development of such platforms is
inevitable in the unrelenting pursuit for wireless foundation
models. The idea of developing a wireless foundation model
is to revolutionize the prototyping of radio software and hard-
ware and benchmarking it in multiple real-world scenarios
to evaluate its effectiveness. Developing such unified founda-
tionmodels in image processing, natural language processing
and acoustics required synthesis of massive amount of data
from both real-world and generative sources. The procure-
ment of similar level of both real-world and synthetic data
in diverse complex environments requires readily available
tools to collect and real world applications to incentivize. We
believe tools like ours present a unique application driven
vision to fill that exact gap in the wireless ecosystem.
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