MIMO-RIC: RAN Intelligent Controller for MIMO xApps

Sesha Sai Rakesh Jonnavithula® , Ish Kumar Jain’?, and Dinesh Bharadia!
1University of California San Diego, CA, USA, 2 Rensselaer Polytechnic Institute, Troy, NY, USA

Abstract

The adoption of MIMO technology in wireless networks en-
hances spectral efficiency and enables novel functionalities
such as wireless sensing and localization. These function-
alities can be enabled by Open-RAN architecture to pro-
vide high computation, memory, and data-driven inference
through a RAN Intelligent Controller (RIC). However, exist-
ing RICs focus mainly on higher network layers and lack
essential PHY layer functionalities for MIMO. We present
MIMO-RIC, an open-source RAN intelligent controller tai-
lored for MIMO applications. We enable the streaming of
extensive 3D wireless channel measurements across anten-
nas, subcarriers, and time, from RAN to MIMO-RIC to de-
velop various MIMO apps like beamforming and localization.
We implemented MIMO-RIC on the srsRAN open-source
platform using ZeroMQ messaging system for efficient, low-
latency communication. Our over-the-air experiment setup
consisting of USRP radios and commercial user equipment
demonstrates effective jammer monitoring, nulling, and user
localization applications.

CCS Concepts

« Hardware — Wireless devices; - Networks — Physical
links; Wireless access points, base stations and infras-
tructure.

Keywords
MIMO, O-RAN, RIC, Cellular Stack, srsRAN, Beam-Nulling,
Anti-Jamming, Software-Defined Radios, Localization

ACM Reference Format:

Sesha Sai Rakesh]onnavithula1 , Ish Kumar]ainl’z, and Dinesh
Bharadia!, !University of California San Diego, CA, USA, ?
Rensselaer Polytechnic Institute, Troy, NY, USA . 2024. MIMO-
RIC: RAN Intelligent Controller for MIMO xApps . In The 30th An-
nual International Conference on Mobile Computing and Networking
(ACM MobiCom °24), November 18-22, 2024, Washington D.C., DC,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

ACM MobiCom 24, November 18-22, 2024, Washington D.C., DC, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0489-5/24/11.
https://doi.org/10.1145/3636534.3701548

* MIMO Channel Measurements
* RAN Configuration, e.g., numerology, bandwidth
* Perf. Metrics (KPI), e.g., SINR, BLER, Throughput

I '

MIMO-RIC ‘
= -—>
Open-RAN Controller ‘ MIMO Apps

{ I

* Intelligent MIMO Beamforming
¢ Continuous Jammer Monitoring and Nulling
* New Services: Localization and Tracking

Figure 1: MIMO-RIC is a controller platform that can simplify
MIMO App development in Open-RAN.

USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3636534.3701548

1 Introduction
Today, the use of multiple antennas in Radio Access Net-
works (RAN), enabled by MIMO technology, not only en-
hances spectral efficiency through multiple parallel streams
but also enables new possibilities in wireless sensing, such
as user localization and tracking, multi-user beamforming,
interference/jammer monitoring and nulling. These function-
alities can be further enhanced by data-driven techniques,
but are often secluded from RAN due to limitations in RAN’s
computation or data storage capabilities [1-5]. RAN must
handle PHY layer tasks efficiently, often within less than one
Transmission Time Interval (TTI) or 1 ms, to avoid packet
drops, leaving little room for compute-intensive applications.
Open RAN offers an avenue for application development
within RAN through RAN intelligent controllers (RICs). De-
ployed outside the RAN environment, RICs possess consid-
erable compute and storage capabilities and operate on more
relaxed time-scales, ranging from 10 ms to 1 sec for near-
real-time RICs [6]. This setup allows for the implementation
of novel data-driven, compute-intensive techniques directly
into operational RAN. However, most industry-developed
RICs are proprietary and inaccessible to academic research [7,
8]. Among open-source RICs available to the research com-
munity, such as FlexRIC [9], EdgeRIC [10], and CloudRIC [11],
they primarily focus on higher layers of the networking stack
and generally lack essential PHY layer functionalities needed
for MIMO operations.

https://doi.org/10.1145/3636534.3701548
https://doi.org/10.1145/3636534.3701548
https://doi.org/10.1145/3636534.3701548

To facilitate compute-efficient data-driven MIMO tech-
niques, Open RAN presents an opportunity to facilitate appli-
cation development using RAN intelligent controllers (RICs).
RICs are deployed outside of RAN environment with consid-
erable compute and storage capabilities and operate on more
relaxed time-scales, ranging from 10 ms to 1 sec for near-
real-time RICs [6]. This setup allows for the implementation
of novel data-driven, compute-intensive techniques directly
into operational RAN. However, most industry-developed
RICs are proprietary and inaccessible to academic research [7,
8, 12]. Among open-source RICs available to the research
community [9, 10, 10], they primarily focus on higher layers
of the networking stack and generally lack essential PHY
layer functionalities needed for MIMO operations.

In this paper, we present MIMO-RIC, that addresses this
gap by developing an intelligent controller for MIMO ap-
plications as shown in Figure 1. The key requirement for
MIMO-RIC is the ability to stream wireless channel mea-
surements from RAN to the controller, as channel informa-
tion is crucial for MIMO applications such as beamforming
and localization. Further, the channel should be accessible
across multiple antennas, frequency subcarriers, and time
slots to enable advanced algorithm development. The second
requirement for MIMO-RIC is to monitor various network
performance indicators such as SINR, BLER, and Through-
put to continuously detect interferers or jammers and to
evaluate the performance of new beamforming techniques.
Finally, the controller should be able to create policies that
dictate how the RAN should be configured or updated to
enhance MIMO performance. These policies could involve
beamforming weights that RAN applies directly to multi-
antenna streams or higher-level decisions that prioritize
among various beamforming or beam-nulling algorithms
at any given time.

With these requirements in mind, we developed and demon-
strated MIMO-RIC using the srsRAN open-source platform [13]
and modified the RAN stack for MIMO applications. To fa-
cilitate bi-directional communication between RAN and the
controller, we adopted a ZeroMQ (ZMQ) based message pass-
ing library similar to EdgeRIC [10] and BeamArmor [14].
However, ZMQ interfaces built for one application are not
easily transferable to others due to differences in data types,
structures, and access points within the RAN stack. For exam-
ple, BeamArmor [14] developed a ZMQ interface to stream
raw IQ data from each antenna in RAN to the controller, but
it is limited by low-frequency data transfer (on the order of
seconds) and high transfer delays, which could even crash
the RAN stack. Instead of raw IQ data, MIMO-RIC streams
processed uplink channel estimates to reduce streaming la-
tency. This implementation involved isolating the PUSCH
processing in the srsRAN stack, identifying specific DMRS
signals that provide the channel data, and inserting the ZMQ

interface at an appropriate location to ensure seamless chan-
nel data transfer to the controller. We share our experiences
with various design choices and insights. For instance, im-
plementing a ZMQ interface to stream per-antenna, per-
subcarrier (or resource element) data incurred high latency
and overhead due to excessive ZMQ flows. To mitigate this,
we combined the channel data across all four antennas and
all subcarriers, and stream the aggregated channel data to the
controller to achieve low latency and overhead. Additionally,
we deployed ZMQ in "conflate” mode, which reduces the
space in shared memory, particularly when the controller
operates on a slower time scale than RAN.

We built a testbed for MIMO-RIC with software-defined
radios such as USRP N310, B210, and PlutoSDR, srsRAN gNB
software stack, and a OnePlus 8 and Google Pixel phone
as user-equipment. We particularly demonstrated three use
cases for jammer monitoring, jammer nulling and user an-
gular localization using MIMO antennas. We monitor for
jammer uisng variation in performance metrics such as SINR,
BLER, and throughput. We then estimate the jammer chan-
nel and apply per-subcarrier nulling to mitigate the impact
of wideband interference. We finally show accurate angle
estimation using FFT-based techniques for angle estimation.
Various indoor and outdoor experiments demonstrate the
effectiveness of these use cases. We believe our open-source
platform will be a valuable tool for the research community
to develop more advanced data-driven use cases for these
and other MIMO applications.

In summary, we make the following contributions by build-
ing MIMO-RIC:

e A platform to stream MIMO channel across antenna,
time, and frequency to the controller

e Supports up to 4 antennas in srsSRAN 5G.

e Monitors SINR, Throughput, and BLER in real-time to
detect jammers.

e Demonstrates MIMO applications such as beam-nulling
and direction of arrival estimation.

2 Motivation and Related Work

2.1 Why O-RAN for MIMO Applications?

We provide a brief background on O-RAN and motivate
for why it will enhance the development of MIMO applica-
tions. The architecture of Open-RAN is divided into three
main components, the Radio Unit (RRU), the Distributed Unit
(DU) and the Centralized Unit (CU). The RRU handles the
RF processing and is located at the cell site. The DU takes
care of the real-time processing tasks such as scheduling
and beamforming, while the CU, which is further split into
control plane (CU-CP) and User plane (CU-UP), manages
the higher-layer protocols and non-real-time processes. The
RAN Intelligent Controller (RIC) in O-RAN is a component

that enhances network flexibility and performance through
constant optimization. It is typically deployed on general-
purpose, commercial off-the-shelf (COTS) servers within the
network’s cloud infrastructure and has interfaces to commu-
nicate with the various network layers in O-RAN (eg: PHY,
MAC, RLC etc.). The RIC architecture offer several signifi-
cant advantages for modern network management that are
typically not available in RAN, such as-.

o Near-Real-Time optimization Capabilites: The RIC
enables near-real-time operations around the PHY
layer and MIMO applications, crucial for maintain-
ing high performance and efficiency in complex radio
environments.

e Computational Capabilites: RIC supports the ex-
ecution of compute-heavy algorithms involving Al
and machine learning tasks, which require dedicated
hardware to run effectively. This allows for more so-
phisticated and adaptive network optimizations.

e Data Storage Capabilites: Monitoring applications
benefit from the RIC’s ability to maintain a history
of data and track changes within the network. For in-
stance, interference monitoring relies on this historical
data to detect and mitigate issues that could degrade
network performance.

o Interfacing External Hardware/Information: Ex-
ternal information that needs to be integrated into the
ORAN system can be efficiently managed and acted
upon through the RIC, making it a central hub for
data-driven decision-making.

These capabilities are realized through xApps which are
applications that the network operators can deploy onto the
RIC to interface with O-RAN and collect data for various
applications broadly classified as monitoring and control
applications. Monitoring Apps are used for inference tasks
such as estimating the presence of a jammer or predicting
user location using multiple antennas. On the other hand,
control Apps provide policies that can change certain net-
work states such as RAN configuration of adoption of new
beamforming/nulling weights. This way, novel data-driven
and compute-extensive MIMO algorithms can be adopted in
RAN using the proposed MIMO-RIC architecture.

2.2 Related Work

RIC Platforms: With the development of O-RAN, many
industries race to build their own RIC, such as VMware
RIC [12], Microsoft [7], Nokia Bell Labs [8], Mavenir [15],
Juniper Networks [16], etc. However, these RICs are propri-
etary or are built on non-open-source RAN platforms and
therefore not available to the research community. FlexRIC [9]
is an open-source standard-compliant RIC solution that works

with open-source RAN stacks such as srsRAN [13] and Open-
Air Interface [17]. However, FlexRIC only offer Apps devel-
opment at higher layers of networking stack, but not for
the PHY layer. Similarly, CloudRIC [11] develops hardware
accelerators for multi-DU settings. There are other platforms
that focuses on mmWave networks [18-23], while we focus
on sub-6 MIMO setting.

EdgeRIC [10] and BeamArmor [14, 24] are closest to MIMO-
RIC as they are built on srsRAN with similar ZMQ based
interface, but they lack MIMO capabilities in many ways.
EdgeRIC [10] only supports SISO links; BeamArmor [14, 24]
supports MIMO, but it can only stream raw IQ data instead
of wireless channel data to the RIC that limits its usage and
suffer from high latency overhead. Moreover, BeamArmor
is built on srsRAN 4G stack with support form only two
antennas in uplink. In contrast, MIMO-RIC provides DMRS
channel streaming across all subcarriers and up to 4 antennas
and is built on the 5G srsRAN software stack.

App Development: Most xApps are built for higher lay-
ers in network stack such as network slicing [25, 26], Net-
work automation [27, 28], and multi-user resource sched-
uling [10, 29, 30]. In contrast, we demonstrate PHY-layer
MIMO-based apps such as user localization, jammer moni-
toring and nulling.

Other MIMO platforms: Bigstation [31], Agora [32],
and Hydra [33] provide extremely large scale Massive MIMO

testbed with parallel threading and multi server implementation—

e.g. Hydra [33] supports 150x32 antennas—however, they
only implement PHY layer of network stack and does not
address compliance with end-end O-RAN stack.

3 MIMO-RIC Design

MIMO application primarily depends on channel estimates
provided by the RAN. We developed MIMO-RIC to facilitate
MIMO applications by granting access to channel estimates
derived from uplink channel estimates in 5G NR. By provid-
ing access to these estimates across all receive antennas, we
enable the development of various applications focused on
advanced beamforming techniques, jammer detection and
nulling, and localization. In this section, we discuss vari-
ous design choices, 5G NR signaling, and integration with
srsRAN. We will also discuss the jammer nulling application
in detail.

3.1 Near-Real Time Design with O-RAN

The overall architecture for MIMO-RIC is shown in Figure 2.
MIMO-RIC controller is based on srsRAN, an open-source
RAN solution that adheres to 3GPP and O-RAN alliance stan-
dards. Communication between the RAN and the controller
is managed using the ZMQ publisher-subscriber architecture,
facilitated by the ZMQ library. In this setup, a ZMQ publisher
socket can transmit messages to multiple subscriber sockets,

@—{ADC C/C++ Mimo Python
r\]W Channel MIMO
ZMQ | Data App 1
AW ®—{ADC Open- | pub
MIMO MIMO (“mimo
% RAN Control -RIC App 2
&—|ADC, Operating in real-time

Figure 2: MIMO-RIC Architecture: Consists of ZMQ publish-
er/subscriber messaging between RAN and RIC to stream
MIMO channel data for MIMO Apps development.

while subscriber sockets receive messages from specific pub-
lishers. This architecture allows for flexible data streaming,
enabling new publishers and subscribers to be added without
disrupting existing components. Additionally, it decouples
the controller from the RAN, as publishers and subscribers
do not need to be aware of each other’s presence, thus sup-
porting modular development.

In our implementation, we adhere to the O-RAN policy of
independent controller and RAN operation by employing the
ZMQ Pub and Sub architecture and interfacing them with the
upper layers of the RAN stack such as the PUSCH processor
and equalization. This architecture helps us meet the strin-
gent timing requirements of the lower layers of the cellular
stack. To minimize disruption to these timing requirements,
we place the ZMQ sockets in the upper layers of the srsRAN
stack. This approach avoids the complexities associated with
timing in the lower layers, such as the PHY layer. It also
provides the flexibility to incorporate additional features,
such as conditional streaming, where logical operations are
implemented in the upper layers to manage the frequency of
data transfer into the ZMQ buffers. Such features would be
challenging to implement if we were streaming data directly
from the PHY layer due to the stringent timing constraints
and the computational load of these operations.

3.2 Seamless integration into 5G NR Stack
and Access to Channel Parameters

The localization and jammer nulling applications developed
on the MIMO-RIC platform required the latest channel esti-
mates from all four receive antennas to be streamed to the
controller with minimal delay. To seamlessly integrate into
the 5G NR cellular stack, we opted to access these channel
values at the Physical Uplink Shared Channel (PUSCH) pro-
cessor within the upper layer of the srsRAN stack. In 5G NR,
the PUSCH is utilized by User Equipment (UE) to transmit
user data to the base station and includes Demodulation Ref-
erence Signals (DMRS). DMRS are known reference signals
that assist the base station in estimating channel character-
istics, thus correcting signal distortions caused by fading,

interference, and noise. These DMRS transmissions, which
occur more frequently than other 5G reference signals during
active data transmission, provide a detailed view of chan-
nel characteristics over time. The channel estimates derived
from DMRS are interpolated across all frequency subcarriers
(or resource elements) allocated to the UE, offering a com-
prehensive picture of channel properties in both time and
frequency domains.

For our applications, it was crucial to access the most
recent channel estimates at the RIC in near-real-time rather
than relying on historical data. This requirement led us to
use ZMQ sockets in “Conflate” mode, where the ZMQ buffers
retain only the most recent channel estimates and stream
them to subscribers on-demand. This approach significantly
reduces timing and memory overhead while ensuring the
controller receives the necessary channel data. We optimized
data structures to enable the channel estimates from all active
Rx antennas to be written to the ZMQ buffer in a single
operation per 5G NR slot. On the controller side, we read
these values in a single operation per slot and forward them
for further processing.

3.3 MIMO Nulling Matrix Calculation for
Jammer Mitigation

We present a methodology to mitigate the effects of a wide-
band jammer. that creates significant interference, introduc-
ing noise into the User Equipment (UE) signals. This inter-
ference reduces the signal-to-interference-plus-noise ratio
(SINR) of the UL traffic, resulting in a higher block error
rate (BLER) and a significant drop in the cellular network’s
throughput. Our proposed anti-jamming technique involves
creating a beam-nulling at the receiver antennas that effec-
tively nullifies the signal received from the jammer. This is
achieved by calculating a precoding matrix, also known as
a nulling matrix, which applies specific weights to the in-
coming UE data. The nulling matrix is derived from channel
estimates obtained by the Physical Uplink Shared Channel
(PUSCH) processor within the MIMO-RIC.

To illustrate, let’s denote h,, as the channel estimate at the
gNB when the UE is connected without the jammer, and h,
as the interference observed when the UE is connected with
the jammer active. The channel for the jammer can then be
estimated as h; = h; — h,,. In our scenario, let h represent
the nulling vector for a single subcarrier. Given that we
have four receiver antennas on our gNB, h would be a 4x1
vector. To calculate h, we formulate an optimization function
that maximizes the product h * h,, while minimizing h = h;.
Listing 1 below shows the pseudocode for this optimization
in MATLAB as follows:

Listing 1: CVX Optimization Block

% Optimize using CVX
cvx_begin quiet
variable h(4) complex

minimize (normChu' * h - 1))
subject to
hj' = h == 0.1;
cvx_end

Once h vectors are computed across all frequency subcarriers,
they are applied to the incoming UE signals. This accumula-
tion results in a matrix h,, that acts as an equalization matrix,
minimizing the received jammer signal while maximizing
the desired UE signal. The nulling matrix is calculated at the
controller once channel estimates are available from the RIC,
and it is then sent back to the RAN for application in the
equalization process at the upper layers.

However, in scenarios where the channel conditions change
rapidly, such as in high-mobility environments, the accuracy
of our anti-jamming technique may decrease because the
nulling matrix would be based on outdated channel esti-
mates. Nonetheless, this method is more precise than using a
single nulling vector for the entire wideband, as it accounts
for frequency-selective fading across subcarriers. Channel
prediction and extrapolation techniques can further enhance
the channel quality under high mobility.

4 Implementation with srsRAN 5G

We implemented MIMO-RIC with srsSRAN 5G software stack
and address various challenges associated with srsSRAN. We
also provide details on our over-the-air experimental testbed.

4.1 Challenges: srsRAN Implementation

One main challenge in implementing ZMQ with srsRAN is
the ZMQ initialization, which has to be done only once. To
avoid multiple initializations of ZMQ publishers, they have
to be initialized in the header file. A naive way is binding
these ZMQ sockets to TCP ports in the class constructor,
but the problem is it may be called multiple times due to
the creation of multiple objects from the same class. This
could potentially lead to the same ZMQ socket being bound
repeatedly to the same TCP port, resulting in errors. To
prevent this, we created a global boolean variable in the
header file that tracks whether the ZMQ socket has been
bound. This ensures that each socket is bound to a TCP port
only once, skipping the binding operation if it has already
been performed.

The next challenge is to obtain channel across all subcar-
riers and antennas. In the pusch_processor_impl.cpp file of
the srsRAN stack [13], we use the PDU object to retrieve the
number of OFDM symbols, RX ports, and layers for the cur-
rent session. This information is utilized to collect channel
estimates for each symbol across all RX ports and layers. The

get_symbol_estimates function is called iteratively to obtain
the channel estimate arrays for each symbol. This function
is invoked every time a PUSCH is processed. The estimates,
interpolated from DMRS values, cover all PRBs (Physical
Resource Blocks) and symbols within a slot. For example, a
UE with an allocation of 106 PRBs at a 30 kHz subcarrier
spacing has 1272 channel estimate values per RX antenna.
These estimates from all antennas are serialized into a single
vector and written to the ZMQ buffer in one operation.

The final channelge is to setup a ZMQ subscriber in the
srsRAN stack to receive null-steering coefficients from the
RIC. This subscriber socket is bound to a TCP socket in
the channel_equalizer_zf impl.cpp file and is used in the
equalize_1xn.h file to receive coefficients from the RIC and
apply them to all resource elements (REs). Similar to the
publisher, socket binding is performed in the constructor
of channel_equalizer_zf impl .cpp, with a global variable
ensuring that multiple TCP port bindings are avoided. It is
noted that equalize_1xn.h in the srsSRAN implementation
does not process all REs simultaneously but instead divides
them to perform equalization across multiple function calls.
Therefore, the null-steering values sent by the RIC are re-
ceived, split, and applied to the incoming data according to
the same RE index split.

4.2 Over-the-air Experiment Setup

We created an over-the-air setup consisting of a Jammer, a
UE, and a gNB. The gNB was a PC running srsRAN 5G with
USRP N310 as the RF front-end for 5G uplink and down-
link transmissions. We used the OnePlus 8 and Google Pixel
phone as UE and a Pluto SDR as jammer that creates a wide-
band (40 MHz) OFDM signal in the UE’s operating band,
hence acting as an interference to the UE uplink transmis-
sions. MIMO-RIC, our RAN controller was running on the
same PC as the srsgnb. We ran our setup in various indoor
and outdoor environments and it involved placing the UE at
different angular locations wrt the gNB and collecting the
channel estimate data using the MIMO-RIC framework. For
emulating a scenario where the UE is experiencing interfer-
ence from an external jammer, we placed the jammer (pluto
SDR) close to the UE and collected the channel estimate data
with and without the jammer.

5 Use Cases and Platform Evaluation

We first present three use cases for Jammer Monitoring, Jam-
mer Nulling, and Localization and then show benchmark for
platform evaluation.

5.1 Jammer Monitoring

We took multiple measurements with the UE and Jammer
present at different locations. This was done to evaluate both

__USRP N310
as RRH for °

(a) Experiment Scenario

(b) 5G gNB with 4 antenna MIMO Setup

- ~“Pluto SDR TSNS
ammer | emulating Power
& 'Antenna Jamme Amplifie

v

(d) COTS UE Setup

(c) Jammer PlutoSDR Setup

Figure 3: Experiment Setup: the srsGNB PC running the RAN and the controller, PlutoSDR jammer, and Pixel phone UE.

é; 0 % 1515 %40 [Jammer On
~ — | —Antenna 1 ; o0k —Antenna 1 o 20
% 50 r\——"’\‘/fAmenna of S -~ WW*Antenna 2 =z 0 Jammer Off
2 Antenna 3 2-25¢ Antenna 3[_ L2 20 40 60 80 100 120
=4 — L — —_ .
S.100 Antenna 4 g-so Antenna 4 0 Time(s)
= 0 100 200 300 400 500 600 = 0 100 200 300 400 500 600 S 20757 amimer O 4
Subcarrier Index _ Subcarrier Index 10 |
’!;:‘ %) S 0 Jammer Off
530 yrr— S yrre— 20 20 40 60 80 100 120
= — Antenna 2" S Iz —Antenna .
E 20 — Antenna 3| & 0 —Antenna 3 100 Time(s)
=10 Antenna 4 ; -5r Antenna 4 E Jammer Off |Jammer On
Q — 10k —A 4L 50 }’ ﬁ N Y M%
§ 0 Antenna 4 § 10 ntenna F 7 o i
o0 100 200 300 400 500 600 oo 100 200 300 400 500 600 0 20 40 60 80 100 120

Subcarrier Index

Figure 4: Wideband channel without

jammer jammer

the accuracy and stability of the channel received. We cap-
tured multiple data points at each of these locations which in-
cluded the SNR, throughput, and BLER measurements along
with the channel estimates.

Figure 4 and 5 show the magnitude and phase plots of
channel response across the subcarriers in the presence and
absence of our wideband jammer. The effect of the jammer
interference varied across the subcarriers in both magnitude
and phase. This highlights, the need for having the chan-
nel estimate data per resource element (RE) since every RE
would need a different nulling (or a precoding) matrix when
the interference is wideband and has varying effects across
subcarriers.

A rudimentary way of detecting a jammer would be to
constantly monitor the SNR, BLER, and throughput metrics
of the UE. In our implementation, we have placed hooks
to monitor these values. Figure 6 show the SINR BLER and
Bitrate plots with and without a jammer. As observed, there
is a drop in the observed values of Bitrate and throughput
as the jammer is introduced. As expected, the BLER value is
higher in the presence of jammer.

Subcarrier Index

Figure 5: Wideband channel with

Time(s)

Figure 6: Jammer monitoring: SINR,
BLER, and Bitrate

5.2 Jammer Nulling

We use our MIMO-RIC platform to address the use case of
jammer nulling. In contrast to previous work which only
demonstrate LOS jammer nulling using average channel
across all subcarriers [14], we demonstrate per-subcarrier
jammer nulling using our unique wideband uplink channel
data, which is desired for multi-path environments. Using
the approach detailed in the design section, we calculated
the per-subcarrier nulling matrix with the jammer at differ-
ent angular locations. This nulling matrix is then used to
equalize the received data. We compared the performance of
using a per-subcarrier nulling matrix against that of using
a constant nulling vector across all frequency subcarriers
in Figure 7. Specifically, we evaluated the norm magnitude
|lh,, = hy||, where h,, is the calculated nulling matrix with
the dimension given by: no. of subcarriers X no. of Rx ports
and h; is the channel matrix with both the user and jam-
mer operational, i.e,, h; = h, + h;. The norm magnitude
of this term is directly proportional to the SNR improve-
ment. It is observed that the nulling matrix created using
the per-subcarrier nulling coefficients provides us 2-5 dB

—_
~
©
o
S

60°

gth (dB)
>

n
o

Per-Subcarrier Nulling Coefficients
-=-Average Nulling Coefficient

Normalized stre
S

-60°

—_
—_

-20 0 20 40 60 90°

Jammer Angle (Degrees)

Figure 7: Normalized Signal Strength
comparing wideband vs narrowband
channel nulling performance.

o
22000
)
© 1000 |

500 EWith ZMQ Streaming
Il Without ZMQ Streaming
0 = n n n

Run1 Run2 Run3 Run4 Runb5

te

nL

Figure 10: Plot Showing Latency Comparison between cases
where MIMO-RIC ZMQ streaming is enabled and disabled

better performance when compared to using average nulling
coefficient across all the frequency.

5.3 Localization

We demonstrate MIMO-RIC platform can be used for localiza-
tion application. Using the gathered channel estimates with
the UE positioned at various angles relative to the gNB, we
plotted the FFT-based beam pattern in Figure 8 for the UE po-
sitioned at -10 degree and 20 degree with respect to the gNB.
Figure 9 shows localization error at various other angles and
demonstrates high accuracy of the detected angle even with
simple FFT-based techniques. More advanced data-driven
localization and tracking techniques such as DLoc [34] or
mDTrack [35] can be included as an xApp in our MIMO-RIC
platform in the future.

5.4 Platform Evaluation

To evaluate platform latency, we integrated a high-resolution
timer into the srsRAN codebase to precisely measure the time
intervals between consecutive calls of the PUSCH process-
ing function. This approach allowed us to assess the impact
of enabling and disabling ZMQ streaming to MIMO-RIC on
latency. We conducted five test runs, each comprising 8,000
PUSCH processing function calls. The latency for each run

—
w »
[< T
o
o

-30°

(a) UE at 10°

Figure 8: Beam pattern plotted us-
ing channel measurements for UE
at different angles

90°
3 60° 50 -8
2 o B 40
30 ﬁ -
7’
1 2 30]
c 070 7
0 0° < 20 -~
© s
£ 10 -7
©
E -7
-30° E 0 o © Estimated
28q, . 7 — Ground Truth
. -10
-60 -10 0 10 20 30 40

907 Actual Angle (Deg)

(b) UE at -20°

Figure 9: Plot with annotations
showing error in the predicted
angles at different UE angular

locations

was averaged across these calls, providing a comprehensive
comparison of the system’s performance with and without
ZMQ streaming. Figure 10 shows that ZMQ introduces la-
tency less than 500us which is tolerable in real-time RAN
stacks.

6 Conclusion

MIMO-RIC provides an open-source srsSRAN-based controller
platform for developing novel MIMO applications in real-
time such as beamforming, beam-nulling, anti-jamming, and
localization, demonstrating the significant potential for fu-
ture O-RAN innovations.

7 Acknowledgement

This research was supported in part by the NSF grant 2030245

and the U.S. Department of Defense N66001-23-F-0484 P00001.
We thank the anonymous reviewers and Shephard for pro-
viding insightful feedback and the members of WCSNG lab,

UC San Diego, for group discussions.

References
[1] Tain Morris. Open RAN and the mission to crack mas-
sive ~ MIMO. https://www.lightreading.com/open-ran/

open-ran-and-the-mission-to-crack-massive-mimo, 2023.

[2] Xilinx. The Open RAN System Architecture and
mMIMO. https://my.avnet.com/silica/resources/article/
open-ran-system-architecture-and-mmimo/, 2021.

[3] Mavenir. Clarity on O-RAN Specification Updates for
Massive MIMO Radios. https://www.mavenir.com/blog/
clarity-on-o-ran-specification-updates-for-massive-mimo-radios/,

2023.

[4] Keysight. Keysight Enables Open RAN Mas-
sive MIMO Innovation. https://www.keysight.
com/us/en/about/newsroom/news-releases/2024/
0226-pr24-035-keysight-enables-open-ran-massive-mimo-innovation.
html, 2023.

[5] Iain Morris. Verizon tech boss says open RAN still fails

at massive MIMO. https://www.lightreading.com/open-ran/
verizon-tech-boss-says-open-ran-still-fails-at-massive-mimo, 2023.

https://www.lightreading.com/open-ran/open-ran-and-the-mission-to-crack-massive-mimo
https://www.lightreading.com/open-ran/open-ran-and-the-mission-to-crack-massive-mimo
https://my.avnet.com/silica/resources/article/open-ran-system-architecture-and-mmimo/
https://my.avnet.com/silica/resources/article/open-ran-system-architecture-and-mmimo/
https://www.mavenir.com/blog/clarity-on-o-ran-specification-updates-for-massive-mimo-radios/
https://www.mavenir.com/blog/clarity-on-o-ran-specification-updates-for-massive-mimo-radios/
https://www.keysight.com/us/en/about/newsroom/news-releases/2024/0226-pr24-035-keysight-enables-open-ran-massive-mimo-innovation.html
https://www.keysight.com/us/en/about/newsroom/news-releases/2024/0226-pr24-035-keysight-enables-open-ran-massive-mimo-innovation.html
https://www.keysight.com/us/en/about/newsroom/news-releases/2024/0226-pr24-035-keysight-enables-open-ran-massive-mimo-innovation.html
https://www.keysight.com/us/en/about/newsroom/news-releases/2024/0226-pr24-035-keysight-enables-open-ran-massive-mimo-innovation.html
https://www.lightreading.com/open-ran/verizon-tech-boss-says-open-ran-still-fails-at-massive-mimo
https://www.lightreading.com/open-ran/verizon-tech-boss-says-open-ran-still-fails-at-massive-mimo

—

—

=

—

—

[t

[6] Michele Polese, Leonardo Bonati, Salvatore D’Oro, Stefano Basagni,

and Tommaso Melodia. Understanding o-ran: Architecture, interfaces,
algorithms, security, and research challenges. IEEE Communications
Surveys & Tutorials, 2023.

Xenofon Foukas, Bozidar Radunovic, Matthew Balkwill, and Zhihua
Lai. Taking 5G RAN analytics and control to a new level. In Proceedings
of the 29th Annual International Conference on Mobile Computing and
Networking, pages 1-16, 2023.

Chang Liu, Gopalasingham Aravinthan, Ahan Kak, and Nakjung Choi.
Tinyric: Supercharging o-ran base stations with real-time control.
In Proceedings of the 29th Annual International Conference on Mobile
Computing and Networking, pages 1-3, 2023.

Robert Schmidt, Mikel Irazabal, and Navid Nikaein. Flexric: An sdk
for next-generation sd-rans. In Proceedings of the 17th International
Conference on Emerging Networking EXperiments and Technologies,
CoNEXT 21, page 411-425, New York, NY, USA, 2021. ACM.
Woo-Hyun Ko, Ushasi Ghosh, Ujwal Dinesha, Raini Wu, Srinivas
Shakkottai, and Dinesh Bharadia. {EdgeRIC}: Empowering real-time
intelligent optimization and control in {NextG} cellular networks. In
21st USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 24), pages 1315-1330, 2024.

Leonardo Lo Schiavo, Gines Garcia-Aviles, Andres Garcia-Saavedra,
Marco Gramaglia, Marco Fiore, Albert Banchs, and Xavier Costa-Perez.
Cloudric: Open radio access network (o-ran) virtualization with shared
heterogeneous computing. In Proceedings of the 30th Annual Interna-
tional Conference on Mobile Computing and Networking, pages 558-572,
2024.

VMware. Simplifying Multi-Vendor RAN Operations through Open-
ness and Programmability with VMware RIC. https://www.vmware.
com/docs/vmware-ran-intelligent-controller-datasheet, 2023.
srsRAN. srsran: Open source 4g/5g software radio access network.
https://github.com/srsran/srsRAN, 2023.

Frederik Jonathan Zumegen, Ish Kumar Jain, and Dinesh Bharadia.
Beamarmor demo: Anti-jamming system in cellular networks with
srsran software radios. In MILCOM 2023-2023 IEEE Military Communi-
cations Conference (MILCOM), pages 245-246. IEEE, 2023.

Mavenir. Mavenir’s RAN Intelligent Controller (RIC).
https://www.mavenir.com/wp-content/uploads/2022/01/Mavenir_
RIC_Solution_Brief_011722.pdf, 2023.

[16] Juniper Networks. Juniper RAN Intelligent Controller.

https://www.juniper.net/content/dam/www/assets/datasheets/us/
en/network-automation/juniper-ran-intelligent-controller-datasheet.
pdf, 2023.

OAIL Open Air Interface 5G Radio Access Network Project. https:
//openairinterface.org/oai-5g-ran-project/, 2023.

Vikram R Anapana, Nathan H Stephenson, and Vijay K Shah. Milli-o-
ran: A flexible, reconfigurable o-ran enabled mmwave network testbed.
In 2024 IEEE International Symposium on Dynamic Spectrum Access
Networks (DySPAN), pages 181-182. IEEE, 2024.

Ish Kumar Jain, Raghav Subbaraman, and Dinesh Bharadia. Demo
and dataset for mmwave multi-beam tracking using mmobile 28 ghz
testbed. In Proceedings of the 12th ACM Wireless of the Students, by the
Students, and for the Students (S3) Workshop, pages 8-8, 2021.

Ish Kumar Jain, Raghav Subbaraman, and Dinesh Bharadia. A com-
pact and real-time millimeter-wave experiment framework with true
mobility capabilities. In Proceedings of the 29th Annual International

Conference on Mobile Computing and Networking, pages 1-3, 2023.
Ish Kumar Jain et al. mmobile: Building a mmwave testbed to evaluate
and address mobility effects. In mmNets, pages 1-6, 2020.

Ish Kumar Jain, Raghav Subbaraman, and Dinesh Bharadia. Two beams
are better than one: towards reliable and high throughput mmwave

links. In Proceedings of the 2021 ACM SIGCOMM, pages 488-502, 2021.
Ish Kumar Jain, Rohith Reddy Vennam, Raghav Subbaraman, and

Dinesh Bharadia. mmflexible: Flexible directional frequency multiplex-
ing for multi-user mmwave networks. In IEEE INFOCOM 2023-IEEE
Conference on Computer Communications, pages 1-10. IEEE, 2023.
Frederik Jonathan Zumegen, Ish Kumar Jain, and Dinesh Bharadia.
Beamarmor: Seamless anti-jamming in 5g cellular networks with mimo
null-steering. In Proceedings of the 25th International Workshop on
Mobile Computing Systems and Applications, pages 121-126, 2024.
Yongzhou Chen, Ruihao Yao, Haitham Hassanieh, and Radhika Mittal.
{Channel-Aware} 5G {RAN} slicing with customizable schedulers.
In 20th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 23), pages 1767-1782, 2023.

Corrado Puligheddu, Jonathan Ashdown, Carla Fabiana Chiasserini,
and Francesco Restuccia. Sem-o-ran: Semantic and flexible o-ran
slicing for nextg edge-assisted mobile systems. In IEEE Infocom 2023-
IEEE Conference on Computer Communications, pages 1-10. IEEE, 2023.
Salvatore D’Oro, Leonardo Bonati, Michele Polese, and Tommaso Melo-
dia. Orchestran: Network automation through orchestrated intelli-
gence in the open ran. In IEEE INFOCOM 2022-IEEE Conference on
Computer Communications, pages 270-279. IEEE, 2022.

Claudio Fiandrino, Leonardo Bonati, Salvatore D’Oro, Michele Polese,
Tommaso Melodia, and Joerg Widmer. Explora: Ai/ml explainability for
the open ran. Proceedings of the ACM on Networking, 1(CoNEXT3):1-26,
2023.

Archana Bura, Ushasi Ghosh, Dinesh Bharadia, and Srinivas Shakkot-
tai. Windex: Realtime neural whittle indexing for scalable service
guarantees in nextg cellular networks. arXiv preprint arXiv:2406.01888,
2024.

Woo-Hyun Ko, Ujwal Dinesha, Ushasi Ghosh, Srinivas Shakkottai,
Dinesh Bharadia, and Raini Wu. Edgeric: Empowering realtime in-
telligent optimization and control in nextg networks. arXiv preprint
arXiv:2304.11199, 2023.

Qing Yang, Xiaoxiao Li, Hongyi Yao, Ji Fang, Kun Tan, Wenjun Hu,
Jiansong Zhang, and Yongguang Zhang. Bigstation: Enabling scalable
real-time signal processingin large mu-mimo systems. ACM SIGCOMM
Computer Communication Review, 43(4):399-410, 2013.

Jian Ding, Rahman Doost-Mohammady, Anuj Kalia, and Lin Zhong.
Agora: Real-time massive mimo baseband processing in software. In
Proceedings of the 16th international conference on emerging networking
experiments and technologies, pages 232-244, 2020.

Junzhi Gong, Anuj Kalia, and Minlan Yu. Scalable distributed massive
{MIMO} baseband processing. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 23), pages 405-417,
2023.

Roshan Ayyalasomayajula et al. Deep learning based wireless local-
ization for indoor navigation. In Mobicom, pages 1-14, 2020.

Yaxiong Xie, Jie Xiong, Mo Li, and Kyle Jamieson. md-track: Leveraging
multi-dimensionality for passive indoor wi-fi tracking. In The 25th
Annual International Conference on Mobile Computing and Networking,
pages 1-16, 2019.

https://www.vmware.com/docs/vmware-ran-intelligent-controller-datasheet
https://www.vmware.com/docs/vmware-ran-intelligent-controller-datasheet
https://github.com/srsran/srsRAN
https://www.mavenir.com/wp-content/uploads/2022/01/Mavenir_RIC_Solution_Brief_011722.pdf
https://www.mavenir.com/wp-content/uploads/2022/01/Mavenir_RIC_Solution_Brief_011722.pdf
https://www.juniper.net/content/dam/www/assets/datasheets/us/en/network-automation/juniper-ran-intelligent-controller-datasheet.pdf
https://www.juniper.net/content/dam/www/assets/datasheets/us/en/network-automation/juniper-ran-intelligent-controller-datasheet.pdf
https://www.juniper.net/content/dam/www/assets/datasheets/us/en/network-automation/juniper-ran-intelligent-controller-datasheet.pdf
https://openairinterface.org/oai-5g-ran-project/
https://openairinterface.org/oai-5g-ran-project/

	Abstract
	1 Introduction
	2 Motivation and Related Work
	2.1 Why O-RAN for MIMO Applications?
	2.2 Related Work

	3 MIMO-RIC Design
	3.1 Near-Real Time Design with O-RAN
	3.2 Seamless integration into 5G NR Stack and Access to Channel Parameters
	3.3 MIMO Nulling Matrix Calculation for Jammer Mitigation

	4 Implementation with srsRAN 5G
	4.1 Challenges: srsRAN Implementation
	4.2 Over-the-air Experiment Setup

	5 Use Cases and Platform Evaluation
	5.1 Jammer Monitoring
	5.2 Jammer Nulling
	5.3 Localization
	5.4 Platform Evaluation

	6 Conclusion
	7 Acknowledgement
	References

