Towards Data Driven and AI Powered Open RAN

Mahesh K. Marina

Joint work with Chuanhao Sun, Ujjwal Pawar, et al.

Traditional Vendor Ecosystem

Economics the key driver for change: - cost reduction

- new value addition & revenue generation

"Disaggregation" – the key enabler

Three Levels of Disaggregation

1. Disaggregate network function software from hardware

- Run network function software on cheaper commodity hardware *aka* Network Functions Virtualization (NFV)
- Deploy on (edge) cloud to reduce costs further
- 2. Disaggregate control plane from data plane *a la* Software-Defined Networking (SDN)
 - Flexible (programmable) network control, performant data plane
- 3. Disaggregate network functions themselves \rightarrow microservices
 - Modularity, flexible scaling, easier evolution

Disaggregation introduced new research challenges and opportunities

Reflected in my own series of works...

• How to enable programmable RAN control?

- FlexRAN software-defined RAN platform [CoNEXT'16]
- Open source, used by 150+ groups, forerunner to operator-driven O-RAN architecture
- How to virtualize radio resources?
 - Orion RAN hypervisor for radio resource virtualization and RAN slicing [MobiCom'17]
- How to realize intelligent and adaptive resource control applications over the above capabilities?
 - Iris indoor neutral-host small cell spectrum sharing system, leveraging Orion and FlexRAN systems [JSAC'19]
- How to enable cost-effective and high-capacity wireless backhaul?
 - WhiteHaul software-driven white space spectrum aggregation system with commodity radio hardware [MobiSys'20]
- Can we leverage the cloud for cost-effective digital twins for mobile networks?
 - Nervion cloud-native RAN emulator for scalable and flexible mobile core evaluation [MobiCom'21]
- How to design an efficient and scalable virtualized mobile core?
 - CoreKube message focused and cloud-native mobile core system [MobiCom'23]

Open RAN

- Features all three levels of disaggregation
- Can be realized with multivendor components → open (diverse) ecosystem
- Got traction in the industry and becoming a reality

Another transformation in the RAN underway → data-driven and AI-powered operation

Data Driven & AI Powered Open RAN

- Rearchitect RAN control and management to be more disaggregated and App oriented
 - Drive Apps/Controller with RAN & Platform Data
 - Leverage the power of AI in Apps/Controller
- Potential for even more openness and significantly expand the ecosystem

Edge Cloud Platform

Motivation for Data Driven RAN Operation

• Cost reduction

- Automating network management
- Optimizing resource allocation and enhancing QoE
- Enabling energy efficient operation
- Achieving efficient spectrum use
- •

Value addition

- Data analytics
- Positioning
- Sensing

••••

Challenges

- Data acquisition seamlessly and efficiently to enable data-driven operation
- Troubleshooting harder with more disaggregation and vendors
- Robustness of AI models to attacks
- Explainability
- Uncertainty quantification
- Generalization
- App architecture
- Edge infra

Generative AI based Solutions

Generative AI in a Nutshell

Let X represents the space of all true data points x.

Data can be of any modality – numerical, text, images, video, ...

_		
_		

Learn the distribution $P_{model}(x)$ via a generative model that estimates the true but unknown data distribution $P_{data}(x)$.

Several different generative modeling approaches exist – GANs, VAEs, transformers, diffusion models, ...

"Sample" from P_{model} to generate/create new data points x' that mimic x $\in X$, i.e., appear to be drawn from $P_{data}(x)$.

Generative AI for Cellular Networks

- Synthetic cellular network traffic generation:
 - SpectraGAN [CoNEXT'21] for spatiotemporal traffic generation
 - CartaGenie [PerCom'22] for traffic snapshot generation
 - AppShot [TNSM'22] for service-level traffic snapshot generation
- Cost-effective drive test measurement data w/ GenDT [CoNEXT'22]
- Open RAN anomaly detection w/ SpotLight [MobiCom'24]
- Efficient Open RAN telemetry w/ NetGSR [CoNEXT'24]

Open RAN Anomaly Detection Problem

- When operational problems (anomalies) occur, how to reliably detect and pinpoint the root cause?
- In other words, which vendor's component should be blamed?

Questions to tackle...

- 1. Data Collection: What data is needed for anomaly detection in Open RAN?
- 2. Accuracy: How to perform reliable anomaly detection over Open RAN data with minimal false alarms?
- **3.** Explainability: When an anomaly occurs, how to ensure that root cause is identified?
- 4. Efficiency: How to make the anomaly detection system deployable by complying with limited compute resources at far edge and limiting bandwidth consumption?

Our Solution: SpotLight [MobiCom'24]

Holistic data collection process to get relevant KPIs from RAN and Platform

Q

New tailored GenAI based 2-stage anomaly detection method

Causal discovery based root cause identification

Distributed pipeline across far-edge and cloud

Our Solution: SpotLight [MobiCom'24]

Holistic data collection process to get relevant KPIs from RAN and Platform

New tailored GenAI based 2-stage
anomaly detection method

¢

Causal discovery based root cause identification

Distributed pipeline across far-edge and cloud

SpotLight Anomaly Detection Illustration

• JVGAN

- Learn distribution of normal KPI time series
- Detect potential anomaly if observed time series not fully in distribution

• MRPI

 Diffusion based imputation model to confirm anomaly detected by JVGAN

Generative AI for Cellular Networks

- Synthetic cellular network traffic generation:
 - SpectraGAN [CoNEXT'21] for spatiotemporal traffic generation
 - CartaGenie [PerCom'22] for traffic snapshot generation
 - AppShot [TNSM'22] for service-level traffic snapshot generation
- Cost-effective drive test measurement data w/ GenDT [CoNEXT'22]
- Open RAN anomaly detection w/ SpotLight [MobiCom'24]
- Efficient Open RAN telemetry w/ NetGSR [CoNEXT'24]

Motivation

- Potential efficiency and automation gains from data-driven operation in Open RAN hinges on scope and granularity of KPIs "the data"
- Desired granularity KPI and App dependent but generally finer the better
- Fine-grained KPI data collection causes high overhead and can disrupt RAN operation
- Capability to measure any KPI necessary but insufficient

So, can we collect KPI data at desired time granularity without incurring the overhead?

Our Solution: NetGSR [CoNEXT'24]

- NetGSR = DistilGAN + Xaminer
 - DistilGAN custom-designed generator to recover original high-resolution data stream given a low-resolution version
 - Xaminer for sampling rate adaptation

20x Efficiency Gain with 5G Open RAN KPIs

Summary

- Dramatic transformation of mobile networking system architecture and deployment in the past decade
 - Driven by operator economics
 - Key enabler: Disaggregation (at three levels)
 - Introduced new research challenges and opportunities
- Now amid another such transformation in the RAN towards data driven and AI powered operation
 - Similar motivation as before, more disaggregation and expand openness
 - New challenges to be tackled for this transformation to become a reality
- GenAI can be leveraged to address some of the key challenges:
 - Troubleshooting a disaggregated RAN SpotLight [MobiCom'24]
 - Efficient acquisition of RAN data NetGSR [CoNEXT'24]